[1] WILLSON C G, ITO H, FRECHET J M J, et al. Approaches to the design of radiation-sensitive polymeric imaging-systems with improved sensitivity and resolution[J]. J Electrochem Soc, 1986, 133(1), 181-187. [2] HOFER D C, KAUFMAN F B, KRAMER S R, et al. New high-resolution charge-transfer X-ray and electron-beam negative resist[J]. Appl Phys Lett, 1980, 37(3): 314-316. [3] REICHMANIS E, NALAMASU O, HOULIHAN F M. Organic materials challenges for 193 nm imaging[J]. Acc Chem Res, 1999, 32: 659-667. [4] KAJITA T, NISHIMURA Y, YAMAMOTOA M, et al. 193 nm single layer resist materials total consideration on design, physical properties, and lithographic performances on all major alicyclic platform chemistries[J]. Proc SPIE, 2001, 4345: 712-724. [5] 郑金红, 黄志齐, 武文. ULSI用193nm光刻胶的研究进展[J]. 精细化工, 2005, 22: 349-353. ZHENG J H, HUANG W Q, WU W, et al. Progress of 193 nm photoresist for ULSI supporting materials[J]. Fine Chem, 2005, 22: 349-353. [6] WEI W, LIU J, LI H, et al. Development and application of microelectronic photoresist[J]. Prog Chem, 2014, 26(11): 1867-1888. [7] ALLEN R D, WALLRAFF G M, HOFER D C, et al. Photoresists for 193-nm lithography[J]. IBM J Res Dev, 1997, 41(1/2): 95-104. [8] CHOI S J, KANG Y, JUNG D W, et al. Novel single-layer chemically amplified resist for 193-nm lithography[M]. 1997, 3049: 104-112. [9] UZODINMA O, TSUTOMU S, JEFFREY B, et al. Alicyclic polymers for 193 nm resist applications: synthesis and characterization[J]. Chem Mater, 1998, 10: 3319-3327. [10] KUDO T, BAE J B, DAMMEL R R, et al. CD changes of 193 nm resists during SEM measurement[J]. Proc SPIE, 2001, 4345: 179-189. [11] UESUGI T, OKADA T, WADA A, et al. Novel ArF photoresist polymer to suppress the formation of roughness in plasma etching processes[J]. J Vac Sci Technol A, 2013, 31(6): 95-104. [12] KATO K, YASUDA A, MAEDA S I, et al. Novel ArF photoresist polymer to suppress the roughness formation in plasma etching processes[M]//SOMERVELL M H, WALLOW T I. Advances in resist materials and processing technology XXX. 2013, 8682: 86821R-1-10. [13] STURTEVANT J L, VARANASI P R, KWONG R W, et al. 193nm single layer photoresists: defeating tradeoffs with a new class of fluoropolymers[Z]. Advances in resist technology and processing XXII. 2005, 5753: 131-139. [14] WANG Z J, WYLIE K, MARIC M. Synthesis of narrow molecular weight distribution copolymers for ArF photoresist materials by nitroxide mediated polymerization[J]. Macromol React Eng, 2017, 11(3): 1600029. [15] MARIC M, SEOK J, METAFIOT A, et al. Nitroxide-mediated polymerization of adamantyl-functional methacrylates for 193 nm photoresists[J]. Can J Chem Eng, 2017, 95(4): 708-716. [16] WANG Z J, MARIC M. Synthesis of narrow molecular weight distribution norbornene-lactone functionalized polymers by nitroxide-mediated polymerization: candidates for 193-nm photoresist materials[J]. Polymers, 2014, 6(2): 565-582. [17] 魏孜博, 马文超, 邱迎昕. 193 nm深紫外光刻胶用成膜树脂的研究进展[J]. 影像科学与光科学, 2020, 38: 409-15. WEI Z B, MA W C,QIU Y X, et al. Development of matrix resins for 193 nm deep UV photoresist[J]. Imaging Sci Photochem, 2020, 38: 409-415. [18] OKOROANYANWU U, SHIMOKAWA T, BYERS J, et al. New single layer positive photoresists for 193 nm photolithography[M]. 1997, 3049: 92-103. [19] JUNG J C, BOK C K, BAIK K H. Design of cycloolefin maleic anhydride resist for ArF lithography[M]//CONLEY W. Advances in resist technology and processing XV, Pts 1 and 2. 1998: 11-25. [20] DOUKI K, KAJITA T, SHIMOKAWA T. High-performance 193-nm positive resist using alternating polymer system of functionalized cyclic olefins maleic anhydride[M]//HOULIHAN F M. Advances in resist technology and processing xvii, Pts 1 and 2. 2000: 1128-1135. [21] RAHMAN M D, ALEMY E, CONLEY W, et al. High performance 193 nm resist composition using hybrid high performance 193 nm resist composition using hybrid copolymers of cycloolefin/maleic anhydride (COMA)/methacrylate[J]. Proc SPIE, 2002, 4690: 127-135. [22] YOON K S, JUNG D W, LEE S, et al. Novel 193nm photoresist based on olefin-containing Lactones[M]//HOULIHAN F M. Advances in resist technology and processing xviii, Pts 1 and 2. 2001: 688-694. [23] CHOI S J, CHOI Y J, KIM Y S, et al. Improved lithographic performance of 193nm photoresists based on cycloolefin maleic anhydride copolymer by employing mixed PAGs[J]. Proc SPIE, 2001, 4345: 94-105. [24] UESUGI T, OKADA T, WADA A, et al. Dependence of polymer main-chain structure on roughness formation of ArF photoresists in the plasma etching processes[J]. J Phys D-Appl Phys, 2012, 45(9) : 095501 1-6. [25] CHOI S J, KIM H W, WOO S G, et al. Design and synthesis of new photoresist materials for ArF lithography[J]. Proc SPIE, 2000, 3999: 54-61. [26] KIM H W, CHOI S J, JUNG D W, et al. Improved lithographic performance for resists based on polymers having a vinyl ether-maleic anhydride (VEMA) backbone[M]//HOULIHAN F M. Advances in resist technology and processing xviii, Pts 1 and 2. 2001: 119-130. [27] KIM H W, JUNG D W, LEE S, et al. Design and performance of photoresist materials for ArF lithography[J]. Proc SPIE, 2001, 4345: 778-783. [28] VARANASI P R, MANISCALCO J, MEWHERTER A M, et al. Design and development of high performance 193 nm positive resist based on functionalized poly(cyclicolefins)[M]//CONLEY W. Microlithography 1999: advances in resist technology and processing xvi, Pts 1 and 2. 1999: 51-63. [29] ALLEN R D, OPITZ J, WALLOW T I, et al. Design of an etch-resistant cyclic olefin photoresist[M]//CONLEY W. Advances in resist technology and processing xv, Pts 1 and 2. 1998: 463-471. [30] PATTERSON K, OKOROANYANWU U, SHIMOKAWA T, et al. Improving the performance of 193 nm photoresists based on alicyclic polymers[M]//CONLEY W. Advances in resist technology and processing xv, Pts 1 and 2. 1998: 425-437. [31] SUWA M, IWASAWA H, KAJITA T, et al. ArF single layer photoresists based on alkaline-developable ROMP-H resin[M]//CONLEY W. Advances in resist technology and processing xv, Pts 1 and 2. 1998: 26-31. [32] KLOPP J M, PASINI D, FRECHET J M J, et al. Structurally variable cyclopolymers with excellent etch resistance and their application to 193 nm lithography[M]//HOULIHAN F M. Advances in resist technology and processing xvii, Pts 1 and 2. 2000: 23-30. [33] NAITO T, ASAKAWA K, SHIDA N, et al. Highly transparent chemically amplified ArF excimer-laser resists by absorption-band shift for 193 nm wavelength[J]. Jpn J Appl Phys Part 1, 1994, 33(12B): 7028-7032. [34] CAMERON J F, CHAN N, MOORE K, et al. Comparison of acid generating efficiencies in 248 and 193 nm photoresists[M]//HOULIHAN F M. Advances in resist technology and processing xviii, Pts 1 and 2. 2001: 106-118. [35] NALAMASU O. 193 nm single layer resist strategies, concepts, and recent results[J]. J Vac Sci Technol B: Microelectron Nanometer Struct, 1998, 16(6): 3716-3721. [36] ISHII H, USUI S, DOUKI K, et al. Design and lithographic performances of 193-specific photoacid generators[M]//HOULIHAN F M. Advances in resist technology and processing xvii, Pts 1 and 2. 2000: 1120-1127. [37] WANG L Y, WANG W J, GUO X. The synthesis and properties of N-hydroxy maleopimarimide sulfonate derivatives as PAG and inhibitor for deep UV photoresist[M]//STURTEVANT J L. Advances in resist technology and processing xxi, Pts 1 and 2. 2004: 608-615. [38] 郑金红, 黄志齐, 昕陈, 等. 193 nm光刻胶的研制[J]. 感光科学与光科学, 2005, 23: 300-11. ZHENG J H, HUANG Z Q, CHEN X, et al. The study of 193 nm photoresist[J]. Photogr Sci Photochem, 2005, 23: 300-311. [39] SO J, JEONG Y, TAE J Y, et al. Synthesis and characterization of novel acid amplifiers with a low absorbance at 193 nm[J]. J Korean Inst Electr Electron Mater Eng, 2004, 17(8): 806-811. [40] TAHARA M, ARIMITSU K, PARK S W, et al. Monitoring the acidolytic behavior of latent pigment enhanced by an acid amplifier in polymer film[J]. J Photopolym Sci Technol, 2000, 13: 221-222. [41] EARLEY W, SOUCIE D, HOSOI K, et al. Double-deprotected chemically amplified photoresists (DD-CAMP): higher-order lithography[M]//HOHLE C K. Advances in resist technology and processing xxxiv. 2017, 10146: 101460H-1-15. [42] SOUCIE D, EARLEY W, HOSOI K, et al. Higher-order lithography: double-deprotected chemically amplified photoresists (DD-CAMP)[J]. J Photopolym Sci Technol, 2017, 30(3): 351-359. [43] LIU S, GLODDE M, VARANASI P R. Design, synthesis and characterization of fluorine-free PAGs for 193 nm lithography[M]//ALLEN R D, SOMERVELL M H. Advances in resist materials and processing technology xxvii, Pts 1 and 2. 2010, 7639: 76390D-1-8. [44] WANG M, JARNAGIN N D, LEE C T, et al. Novel polymeric anionic photoacid generators (PAGs) and corresponding polymers for 193 nm lithography[J]. J Mater Chem, 2006, 16(37): 3701-3707. [45] PADMANABAN M, BAE J B, COOK M, et al. Application of photodecomposable base concept to 193 nm resists[J]. Proc SPIE, 2000, 3999: 1136-1146. [46] ASAKAWA K, USHIROGOUCHI T, NAKASE M. Effect of basic additives on sensitivity and diffusion of acid in chemical amplification resists[M]. 1995, 2438: 563-570. [47] HOULIHAN F M, KOMETANI J M, TIMKO A G, et al. Photogenerators of sulfamic acids; use in chemically amplified single layer resists[J]. J Photopolym Sci Technol, 1998, 11: 419-429. |