Chinese Journal of Applied Chemistry ›› 2021, Vol. 38 ›› Issue (5): 482-497.DOI: 10.19894/j.issn.1000-0518.210056
• Review • Previous Articles Next Articles
MA Yi-Ming‡, ZHOU Xiao‡, TIAN Yun-Qing, YANG Jing*, ZHANG Lei*
Received:
2021-01-30
Accepted:
2021-03-25
Published:
2021-05-01
Online:
2021-07-01
Supported by:
CLC Number:
MA Yi-Ming, ZHOU Xiao, TIAN Yun-Qing, YANG Jing, ZHANG Lei. Research Progress of Biosafety Materials and Technology of Genetic Resource Preservation[J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 482-497.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210056
[1] 王耀耀, 朱研研, 郝惠云, 等. 去甲基万古霉素菌种低温冷冻、冷干保藏条件优化及10年菌种保藏效果[J]. 微生物学通报, 2016, 43: 1627-1634. WANG Y Y, ZHU Y Y, HAO H Y, et al. Optimization of cryopreservation and lyophilization for demethylvancomycin producing strain—an assessment of 10-year preservation[J]. Microbiol China 2016, 43: 1627-1634. [2] 王晗, 雷秀娟, 宋娟, 等. 药用植物种质资源超低温保存及遗传变异特性研究进展[J]. 特产研究, 2015, 37: 70-73. WANG H, LEI X J, SONG J, et al. Advances in study of medical plant germplasm cryopreservation and genetic variation[J]. Spec Wild Econom Anim Plant Res, 2015, 37: 70-73. [3] 杨蕾蕾, 李婷, 邓菲, 等. 微生物与细胞资源的保存与发掘利用[J]. 中国科学院院刊, 2019, 34: 1379-1388. YANG L L, LI T, DENG F, et al. Preservation and utilization of microorganism and cell resources[J]. Bull Chinese Acad Sci, 2019, 34: 1379-1388. [4] 方云花, 杨湘云. 世界著名种子方舟掠影[J]. 生命世界, 2019, 5: 20-25. FANG Y H, YANG X Y. A glimpse of the world famous seed ark[J]. Life World, 2019, 5: 20-25. [5] 魏健馨, 熊文钊. 人类遗传资源的公法保护[J]. 法学论坛, 2020, 35: 122-130. WEI J X, XIONG W Z. Public law protection of human genetic resources[J]. Legal Forum, 2020, 35: 122-130. [6] MORGAN C A, HERMAN N, WHITE P A, et al. Preservation of micro-organisms by drying; a review[J]. J Microbiol Methods, 2006, 66: 183-193. [7] 孔维丽, 袁瑞奇, 孔维威, 等. 食用菌菌种保藏历史、现状及研究进展概述[J]. 中国食用菌, 2015, 341: 1-5. KONG W L, YUAN R Q, KONG W W, et al. Research progress, history and current situation of spawn preseration of edible fungus[J]. Edible Fungi Chin, 2015, 341: 1-5. [8] HUBÁLEK Z. Protectants used in the cryopreservation of microorganisms[J]. Cryobiology, 2003, 46: 205-229. [9] MIYAMOTO-SHINOHARA Y, SUKENOBE J, IMAIZUMI T, et al. Survival curves for microbial species stored by freeze-drying[J]. Cryobiology, 2006, 52: 27-32. [10] 秦婷婷, 袁恺, 王晓婷, 等. 不同冷冻保藏条件对Glarea lozoyensis生长及产纽莫康定能力的影响[J]. 微生物学杂志, 2017, 37: 47-52. QIN T T, YUAN K, WANG X T, et al. Effect of different cryopreservation conditions on the growth and pneumocandin B0 yielding capability of Glarea lozoyensis[J]. J Microbiol, 2017, 37: 47-52. [11] BELLARD C, BERTELSMEIER C, LEADLEY P, et al. Impacts of climate change on the future of biodiversity[J]. Ecol Lett, 2012, 15: 365-377. [12] ZVINAVASHE A T, LIM E, SUN H, et al. A bioinspired approach to engineer seed microenvironment to boost germination and mitigate soil salinity[J]. Proc Natl Acad Sci USA, 2019, 116: 25555-25561. [13] BENSON E E. Cryopreservation of phytodiversity: a critical appraisal of theory & practice[J]. Crit Rev Plant Sci, 2008, 27: 141-219. [14] PENCE V C, BALLESTEROS D, WALTERS C, et al. Cryobiotechnologies: tools for expanding long-term ex situ conservation to all plant species[J]. Biol Conserv, 2020, 250: 108736. [15] GIRARDI N S, PASSONE M A, GARC A D, et al. Microencapsulation of Peumus boldus essential oil and its impact on peanut seed quality preservation[J]. Ind Crops Prod, 2018, 114: 108-114. [16] MILNER M,CHRISTENSEN C M, GEDDES W F. Grain storage studies.7.influence of certain mold inhibitors on respiration of moist wheat[J]. Cereal Chem, 1947, 24: 507-517. [17] MORENO-MARTÍNEZ E, RIVERA A, BADILLO M V. Effect of fungi and fungicides on the preservation of wheat seed stored with high and low moisture content[J]. J Stored Prod Res, 1998, 34: 231-236. [18] GROUT B W W, MORRIS G J. Contamination of liquid nitrogen storage vessel as potential vectors for pathogens[J]. Cryolett, 2008, 29:74-75. [19] WALTERS C, BERJAK P, PAMMENTER N, et al. Plant science. preservation of recalcitrant seeds[J]. Science, 2013, 339: 915-916. [20] EBONE L A, CAVERZAN A, CHAVARRIA G. Physiologic alterations in orthodox seeds due to deterioration processes[J]. Plant Physiol Biochem, 2019, 145: 34-42. [21] TIAN F, CHEN W, WU C, et al. Preservation of Ginkgo biloba seeds by coating with chitosan/nano-TiO2 and chitosan/nano-SiO2 films[J]. Int J Biol Macromol, 2019, 126: 917-925. [22] TANAKA D, NIINO T, ISUZUGAWA K, et al. Cryopreservation of shoot apices of in-vitro grown genetic plants[J]. Cryo Lett, 2004, 25: 167-176. [23] SAKAI A, KOBAYASHI S, OIYAMA I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification[J]. Plant Cell Rep, 1990, 9: 30-33. [24] TANAKA D, NIINO T, UEMURA M. Cryopreservation of plant genetic resources[J]. Adv Exp Med Biol, 2018, 1081: 355-369. [25] DONNEZ J, DOLMANS M M. Fertility preservation in women[J]. N Engl J Med, 2017, 377: 1657-1665. [26] SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics[J]. CA Cancer J Clin, 2019, 69: 7-34. [27] FINLAYSON C, FRITSCH M K, JOHNSON E K, et al. Presence of germ cells in disorders of sex development: implications for fertility potential and preservation[J]. J Urol, 2017, 197: 937-943. [28] GRONER M F, DE CARVALHO R C, CAMILLO J, et al. Effects of Covid-19 on male reproductive system[J]. Int Braz J Urol, 2021, 47: 185-190. [29] LUYET B J, GBBS M C. On the mechanism of congelation and of death in the rapid freezing of epidermal plant cells[J]. Protoplasma, 1938, 30: 319-319. [30] POLGE C, SMITH A U, PARKES A S. Revival of spermatozoa after vitrification and dehydration at low temperatures[J]. Nature, 1949, 164: 666. [31] LOVELOCK J E, BISHOP M W. Prevention of freezing damage to living cells by dimethyl sulphoxide[J]. Nature, 1959, 183: 1394-1395. [32] PALERMO G. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte[J]. Lancet, 1992, 340: 17-18. [33] GUPTA A, KASHTE S, GUPTA M, et al. Mesenchymal stem cells and exosome therapy for COVID-19: current status and future perspective[J]. Hum Cell, 2020. [34] ARRIGHI N. Stem cells at the core of cell therapy[C]//Stem Cells.2018:73-100. 10.1016/b978-1-78548-254-0.50003-3. [35] LOVELOCK J E. The haemolysis of human red blood-cells by freezing and thawing[J]. Biochim Biophys Acta, 1953, 10: 414-426. [36] CRITSER J K, HUSE-BENDA A R, AAKER D V, et al. Cryopreservation of human spermatozoa. III. the effect of cryoprotectants on motility presented at the forty-third annual meeting of the American fertility society, september 28 to 30, 1987, Reno, Nevada[J]. Fertil Steril, 1988, 50: 314-320. [37] ROYERE D, BARTHELEMY C, HAMAMAH S, et al. Cryopreservation of spermatozoa: a 1996 review[J]. Hum Reprod Update, 1996, 2: 553-559. [38] 魏哲文, 杨竣, 王涛, 等. 人类精子冷冻保存技术的研究进展[J]. 临床泌尿外科杂志, 2017, 32: 923-925. WEI Z W, YANG J, WANG T, et al. Progress in cryopreservation of human spermatozoa[J]. J Clin Urol, 2017, 32: 923-925. [39] SOARES S L, ANCIUTI A N, DIAS L, et al. Safety assessment of poly(N-vinylcaprolactam) as a potential drug carrier in extenders for boar sperm cryopreservation[J]. Toxicol In Vitro, 2020, 65: 104766. [40] TADA N, SATO M, YAMANOI J, et al. Cryopreservation of mouse spermatozoa in the presence of raffinose and glycerol[J]. J Reprod Fertil, 1990, 89: 511-516. [41] 王松坡, 叶耿坪, 苏衍菁. 不同精子保护剂及其作用效果研究进展[J]. 中国奶牛, 2018, 4: 20-23. WANG S P, YE G P, SU Y J. Advances in research on effects of sperm protector on sperm protection[J]. Chin Dairy Cattl, 2018, 4: 20-23. [42] 高雅, 罗桂河, 李卫东, 等. 不同浓度乙二醇和甘油对犬精液冷冻效果的影响[J]. 中国农学通报, 2010, 26: 25-28. GAO Y, LUO G H, LI W D, et al. Influence of different concentrations of ethylene glycol and glycerol on quality of canine frozen sperm[J]. Chinese Agric Sci Bull, 2010, 26: 25-28. [43] WU Z, ZHENG X, LUO Y, et al. Cryopreservation of stallion spermatozoa using different cryoprotectants and combinations of cryoprotectants[J]. Anim Reprod Sci, 2015, 163: 75-81. [44] PICTON H M, WYNS C, ANDERSON R A, et al. A European perspective on testicular tissue cryopreservation for fertility preservation in prepubertal and adolescent boys[J]. Hum Reprod, 2015, 30: 2463-2475. [45] 姚志芳, 冯宇哲, 王磊, 等. 卵母细胞冷冻保存技术的研究进展[J]. 青海畜牧兽医杂志, 2019, 49: 58-61. YAO Z F, FENG Y Z, WANG L, et al. Research progress on cryopreservation technology of oocytes[J]. Chinese Qinghai J Anim Veterinary Sci, 2019, 49: 58-61. [46] WHITTINGHAM D G. Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at -196 ℃[J]. J Reprod Fertil, 1977, 49: 89-94. [47] CHEN C. Pregnancy after human oocyte cryopreservation[J]. Lancet, 1986, 327: 884-886. [48] PORCU E, FABBRI R, SERACCHIOLI R, et al. Birth of a healthy female after intracytoplasmic sperm injection of cryopreserved human oocytes[J]. Fertil Steril, 1997, 68: 724-726. [49] 王琰, 柴三明, 倪亚莉, 等. 卵母细胞冷冻的临床应用进展[J]. 医学综述, 2017, 23: 2094-2097. WANG Y, CHAI S M, NI Y L, et al. Progress of clinical application of oocyte cryopreservation[J]. Med Recap, 2017, 23: 2094-2097. [50] YONEDA A, SUZUKI K, MORI T, et al. Effects of delipidation and oxygen concentration on in vitro development of porcine embryos[J]. J Reprod Dev, 2004, 50: 287-295. [51] EROGLU A, BAILEY S E, TONER M, et al. Successful cryopreservation of mouse oocytes by using low concentrations of trehalose and dimethylsulfoxide[J]. Biol Reprod, 2009, 80: 70-78. [52] 李维杰, 周新丽, 戴建军, 等. 羟基磷灰石纳米颗粒对猪MⅡ期卵母细胞玻璃化保存的影响及其机理初探[J]. 生物医学工程学杂志, 2013, 30: 789-793. LI W J, ZHOU X L, DAI J J, et al. Effect of hydroxyapatite nanoparticles on MⅡ-stage porcine oocytes vitrification and the study of its mechanism[J]. J Biomed Eng, 2013, 30: 789-793. [53] FULLER B, GONZALEZ-MOLINA J, ERRO E, et al. Applications and optimization of cryopreservation technologies to cellular therapeutics[J]. Cell and Gene Therapy Insights, 2017, 3: 359-378. [54] KAUFMAN M H, WHITTINGHAM D G. Viability of mouse oocytes ovulated within 14 hours of an injection of pregnant mares′ serum gonadotrophin[J]. J Reprod Fertil, 1972, 28: 565-568. [55] WILMUT I. The effect of cooling rate, warming rate, cryoprotective agent and stage of development of survival of mouse embryos during freezing and thawing[J]. Life Sci, 1972, 11: 1071-1079. [56] RALL W F, FAHY G M. Ice-free cryopreservation of mouse embryos at -196 ℃ by vitrification[J]. Nature, 1985, 313: 573-575. [57] 廑洪武, 庞也非, 薛晓先, 等. 牛体外受精卵的冷冻保存研究[J]. 内蒙古大学学报, 1992, 3: 425-428. CHAN H W, PANG Y F, XUE X X, et al. The Study of freezing storage of bovine IVF embryos[J]. J Inner Mongolia Univ, 1992, 3: 425-428. [58] 孙艳香, 姜国诚. 玻璃化冷冻保存小鼠受精卵的研究[J]. 广西师范大学学报, 2003, 3: 77-79. SUN Y X, JIANG G C. Study on the vitrified cryopreservation of mouse zygotes[J]. J Guangxi Norm Univ, 2003, 3: 77-79. [59] RODRIGUES P, MARQUES M, PIMENTEL S, et al. Oncofertility case report: live birth 10 years after oocyte in vitro maturation and zygote cryopreservation[J]. J Assist Reprod Genet,2020, 37: 3089-3094. [60] 杨金姬, 李红义. 人卵母细胞冷冻研究进展[J]. 医学综述, 2019, 25: 4940-4944. YANG J J, LI H Y. Research progress in human oocyte cryopreservation[J]. Med Recap, 2019, 25: 4940-4944. [61] RAMALHO-SANTOS M, WILLENBRING H. On the origin of the term “stem cell”[J]. Cell Stem Cell, 2007, 1: 35-38. [62] KATKOV, II, KAN N G, CIMADAMORE F, et al. DMSO-free programmed cryopreservation of fully dissociated and adherent human induced pluripotent stem cells[J]. Stem Cells Int, 2011, 2011: 981606. [63] BEST B P. Cryoprotectant toxicity: facts, issues, and questions[J]. Rejuvenation Res, 2015, 18: 422-436. [64] VONDRÁČEK J, SOUČEK K, SHEARD M A, et al. Dimethyl sulfoxide potentiates death receptor-mediated apoptosis in the human myeloid leukemia U937 cell line through enhancement of mitochondrial membrane depolarization[J]. Leuk Res, 2006, 30: 81-89. [65] THOMÉ S, CRAZE J, MITCHELL C. Dimethylsulphoxide-induced serum hyperosmolality after cryopreserved stem-cell graft[J]. Lancet, 1994, 344: 1431-1432. [66] VAKHSHORI V, BOUGIOUKLI S, SUGIYAMA O, et al. Cryopreservation of human adipose-derived stem cells for use in ex vivo regional gene therapy for bone repair[J]. Hum Gene Ther Methods, 2018, 29: 269-277. [67] HORNBERGER K, YU G, MCKENNA D, et al. Cryopreservation of hematopoietic stem cells: emerging assays, cryoprotectant agents, and technology to improve outcomes[J]. Transfus Med Hemother, 2019, 46: 188-196. [68] RUDOLPH A S, CROWE J H. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline[J]. Cryobiology, 1985, 22: 367-377. [69] LIU M, ZHANG X, GUO H, et al. Dimethyl sulfoxide-free cryopreservation of chondrocytes based on zwitterionic molecule and polymers[J]. Biomacromolecules, 2019, 20(10):3980-3988. [70] HAN Y J, YUAN Z F, ZHANG P, et al. Zwitterlation mitigates protein bioactivity loss in vitro over PEGylation[J]. Chem Sci, 2018, 9: 8561-8566. [71] YANG J, CAI N, ZHAI H, et al. Natural zwitterionic betaine enables cells to survive ultrarapid cryopreservation[J]. Sci Rep, 2016, 6: 37458. [72] 郜磊. 两性离子分子甜菜碱在间充质干细胞冷冻保存中的应用研究[D]. 天津:天津大学化工院生物化工系,2019. GAO L. The study of zwitterionic betaine as a cryoprotectant for MSC cryopreservation[D]. Tianjin: Department of Biochemical Engineering, School of Chemical Engineering and Technology, 2019. [73] 潘超. 天然渗透压调节剂在细胞冷冻保存中的应用研究[D]. 天津:天津大学化工学院生物化工系,2018. PAN C. The study of natural osmoprotectants as novel cryoprotectants[D]. Tianjin: Department of Biochemical Engineering, School of Chemical Engineering and Technology, 2018. [74] ROWLEY S D, FENG Z, CHEN L, et al. A randomized phase III clinical trial of autologous blood stem cell transplantation comparing cryopreservation using dimethylsulfoxide vs dimethylsulfoxide with hydroxyethylstarch[J]. Bone Marrow Transplant, 2003, 31: 1043-1051. [75] MATSUMURA K, HYON S H. Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties[J]. Biomaterials, 2009, 30: 4842-4849. [76] JAIN M, RAJAN R, HYON S H, et al. Hydrogelation of dextran-based polyampholytes with cryoprotective properties via click chemistry[J]. Biomater Sci, 2014, 2: 308-317. [77] STIFF P J, MURGO A J, ZAROULIS C G, et al. Unfractionated human marrow cell cryopreservation using dimethylsulfoxide and hydroxyethyl starch[J]. Cryobiology, 1983, 20: 17-24. [78] HERNANDEZ-NAVARRO F, OJEDA E, ARRIETA R, et al. Hematopoietic cell transplantation using plasma and DMSO without HES, with non-programmed freezing by immersion in a methanol bath: results in 213 cases[J]. Bone Marrow Transplant, 1998, 21: 511-517. [79] DEVRIES A L, WOHLSCHLAG D E. Freezing resistance in some antarctic fishes[J]. Science, 1969, 163: 1073-1075. [80] DELLER R C, VATISH M, MITCHELL D A, et al. Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing[J]. Nat Commun, 2014, 5: 3244. [81] LAN D, CHEN X, LI P, et al. Using a novel supramolecular gel cryopreservation system in microchannel to minimize the cell injury[J]. Langmuir, 2018, 34: 5088-5096. [82] SINCLAIR A, O'KELLY M B, BAI T, et al. Self-healing zwitterionic microgels as a versatile platform for malleable cell constructs and injectable therapies[J]. Adv Mater, 2018, 30: e1803087. [83] ZHANG C, ZHOU Y, ZHANG L, et al. Hydrogel cryopreservation system: an effective method for cell storage[J]. Int J Mol Sci, 2018, 19(11): 3330. [84] HUANG H, CHOI J K, RAO W, et al. Alginate hydrogel microencapsulation inhibits devitrification and enables large-volume low-CPA cell vitrification[J]. Adv Funct Mater, 2015, 25: 6939-6850. [85] WANG J, ZHAO G, ZHANG Z, et al. Magnetic induction heating of superparamagnetic nanoparticles during rewarming augments the recovery of hUCM-MSCs cryopreserved by vitrification[J]. Acta Biomater, 2016, 33: 264-274. [86] CHEN Z, MEMON K, CAO Y, et al. A microfluidic approach for synchronous and nondestructive study of the permeability of multiple oocytes[J]. Microsyst Nanoeng, 2020, 6(1):55. [87] ZHANG Y, WANG H, STEWART S, et al. Cold-responsive nanoparticle enables intracellular delivery and rapid release of trehalose for organic-olvent-free cryopreservation[J]. Nano Lett, 2019, 19: 9051-9061. [88] ZHENG Y, XUE X, RESTO-IRIZARRY A M, et al. Dorsal-ventral patterned neural cyst from human pluripotent stem cells in a neurogenic niche[J]. Sci Adv, 2019, 5: eaax5933. [89] RAO W, HUANG H, WANG H, et al. Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant[J]. ACS Appl Mater Interfaces, 2015, 7: 5017-5028. [90] LIU X, ZHAO G, CHEN Z, et al. Dual suppression effect of magnetic induction heating and microencapsulation on ice crystallization enables low-cryoprotectant vitrification of stem cell-alginate hydrogel constructs[J]. ACS Appl Mater Interfaces, 2018, 10: 16822-16835. [91] ZHU W, GUO J, AGOLA J O, et al. Metal-organic framework danoparticle-assisted ddryopreservation of red blood cells[J]. J Am Chem Soc, 2019, 141: 7789-7796. [92] WAKAYAMA S, OHTA H, HIKICHI T, et al. Production of healthy cloned mice from bodies frozen at -20 ℃ for 16 years[J]. Proc Natl Acad Sci USA, 2008, 105: 17318-17322. [93] KONG H S, KIM E J, YOUM H W, et al. Improvement in ovarian tissue quality with supplementation of antifreeze protein during warming of vitrified mouse ovarian tissue[J]. Yonsei Med J, 2018, 59: 331-336. [94] O′BRIEN M F, GREGORY STAFFORD E, GARDNER M A H, et al. Allograft aortic valve replacement: long-term follow-up[J]. Ann Thorac Surg, 1995, 60: S65-S70. [95] 张小榕. 器官冻存与移植排斥反应[J]. 国外医学, 2000, 68-70. ZHANG X R. Organ cryopreservation and transplant rejection[J]. Int J Immunol, 2000, 68-70. [96] 安飞, 崔鹏程, 张晶, 等. 器官保存方法的研究进展[J]. 临床军医杂志, 2013, 41: 1188-1191. AN F, CUI P C, ZHANG J, et al. Research progress of organ preservation methods[J]. Clin J Med Offic, 2013, 41: 1188-1191. [96] 王勇, 叶少军, 王彦峰, 等. 器官保存的研究进展[J]. 武汉大学学报(医学版), 2016, 37: 560-564. WANG Y, YE S J, WANG Y F, et al. Research progress of organ preservation[J]. Med J Wuhan Univ, 2016, 37: 560-564. [97] 彭宏威, 张姗姗, 周宗宁, 等. 玻璃化法冻存组织样本的研究进展[J]. 转化医学杂志, 2020, 9: 41-44. PENG H W, ZHANG S S, ZHOU Z N, et al. Research progress on cryopreservation of tissue samples by vitrification[J]. Transl Med J, 2020, 9: 41-44. [98] 张源, 曾敏, 翟博. 组织玻璃化冻存技术:优势与尚未完全解决的问题[J]. 中国组织工程研究, 2020, 24: 3751-3755. ZHANG Y, ZENG M, ZHAI B. Vitrification-based cryopreservation of tissues: strengths and existing problems[J]. J Clin Rehabil Tis Eng Res, 2020, 24: 3751-3755. [99] HOVATTA O, SILYE R, KRAUSZ T, et al. Cryopreservation of human ovarian tissue using dimethylsulphoxide and propanediol-sucrose as cryoprotectants[J]. Hum Reprod, 1996, 11: 1268-1272. [100] DONNEZ J, DOLMANS M M, DEMYLLE D, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue[J]. The Lancet, 2004, 364: 1405-1410. [101] BRITO D C C, DOMINGUES S F S, RODRIGUES A P R, et al. Vitrification of domestic cat (Felis catus) ovarian tissue: effects of three different sugars[J]. Cryobiology, 2018, 83: 97-99. [102] MANUCHEHRABADI N, GAO Z, ZHANG J, et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles[J]. Sci Transl Med, 2017, 9: aah4586. |
[1] | CUI Min-Hui, ZHOU Hui-Ling, TANG Dong-Sheng, XIAO Hai-Hua. Biosafety Materials for Bioterrorism Attacks and Biological Warfare [J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 467-481. |
[2] | CAI Man-Ying, LIAO Yu-Hui, XU Wei, ZHOU Dong-Fang. Research Progress on Biosafety Materials for the Prevention and Control of the Coronavirus Disease 2019 [J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 498-509. |
[3] | XIE Zi-Xu, ZHANG Peng-Fei, WANG Xing. Developing New Stereochemistry Antimicrobial Strategy to Advance Biosafety Materials [J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 510-523. |
[4] | ZHAO Yue, MENG Xiang-Qin, YAN Xi-Yun, FAN Ke-Long. Nanozyme: A New Type of Biosafety Material [J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 524-545. |
[5] | TANG Dongsheng, CUI Jianxun, LIANG Ganghao, YU Yingjie, ZHOU Huiling, WEI Dengshuai, XIAO Haihua. Developing Biosafety Materials Science and Building the National Security Wall of China [J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 985-993. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||