[1] ERGURA W, AZEVEDO E A, MONTEIRO A R S, et al. Synthesis, characterization, and antibacterial activity of three palladium(Ⅱ) complexes of tetracyclines[J]. J Inorg Biochem, 2005, 12(99): 2348-2354. [2] GUO Y Y, CAI Z F. Ascorbic acid stabilized copper nanoclusters as fluorescent probes for selective detection of tetracycline[J]. Chem Phys Lett, 2020, 759(16): 138048. [3] MA Z, LIU J, SALLACH J B, et al. Whole-cell paper strip biosensors to semi-quantify tetracycline antibiotics in environmental matrices[J]. Biosens Bioelectron, 2020, 168(15): 112528. [4] LU W B, SHI C Z, YU Y W, et al. Interrelationships between tetracyclines and nitrogen cycling processes mediated by microorganisms: a review[J]. Bioresource Technol, 2021(319): 124036. [5] MENDES R E, HUBAND M D. Flamm. omadacycline in vitro activity against a molecularly characterized collection of clinical isolates with known acquired tetracycline resistance mechanisms[J]. Diagn Micr Infec Dis, 2020, 3(97): 115054. [6] PADILLA A M, CURDRO D M, CAVALLO E R. Combined tetracycline and pyrethroid residues increases protein carbonylation in bovine milk[J]. Int Dairy J, 2020(107): 104708. [7] GOPLAN A, BHAGAVAT R, CHANDRA N, et al. Biophysical and biochemical characterization of Rv3405c, atetracycline repressor protein from Mycobacterium tuberculosis[J]. Biochem Bioph Res Co, 2018, 3(496): 799-805. [8] GAO X, BI H N, ZUO H J, et al. Interaction of residue tetracycline hydrochloride in milk with β-galactosidase proteinby multi-spectrum methods and molecular docking[J]. J Mol Struct, 2017, 5(1141): 382-389. [9] CHEN J N, SUN L, CHENG Y, et al. Graphene oxide-silver nanocomposite: novel agricultural antifungal agent against Fusarium graminearum for crop disease prevention[J]. ACS Appl Mater, 2016, 8(36): 24057-24070. [10] XU L, WANG Y Y, HUANG J, et al. Silver nanoparticles: synthesis, medical applications and biosafety[J]. Theranostics, 2020, 20(10): 8996-9031. [11] OTARIA S V, PATIL R M, Ghosh S J, et al. Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity[J]. Spectrochim Acta A, 2015, 5(136): 1175-1180. [12] PRABHU S, POULOSE E K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects[J]. Int Nano Lett, 2012, 1(2): 1-10. [13] CHENGG Y W, YIN L Y, LIN S H, et al. Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight[J]. J Phys Chem C, 2011, 11(115): 4425-4432. [14] DAI X M, GUO Q Q, ZHAO Y, et al. Functional silver nanoparticle as a benign antimicrobial agent that eradicates antibiotic-resistant bacteria and promotes wound healing[J]. ACS Appl Mater Interfaces, 2016, 39(8): 25798-25807. [15] EBY D M, LUCKARIFT H R, JOHNSON G R, et al. Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments[J]. ACS Appl Mater Interfaces, 2009, 7(1): 1553-1560. [16] BOJCZUK M J, LAMBS L, KOZLOWSKI H, et al. Metal ion-tetracycline interactions in biological fluids. 10. structural investigations on copper(Ⅱ) complexes of tetracycline, oxytetracycline, chlortetracycline, 4-(dedimethylamino) tetracycline, and 6-desoxy-6-demethyltetracyclinaend discussion of their binding modes[J]. Inorg Chem, 1993, 32(4): 428-437. [17] KHAN M A, MUSTFA J, MUSARRAT J. Mechanism of DNA strand breakage induced by photosensitized tetracycline-Cu(Ⅱ) complex[J]. Mutat Res, 2003, 525: 109-119. [18] KHURANA C, SHARMA P, PANDEN O P, et al. Synergistic effect of metal nanoparticles on the antimicrobial activities of antibiotics against biorecycling microbes[J]. J Mater Sci Technol, 2016, 6(32): 524-532. [19] 王孟珍, 孙昊宇, 龙茜, 等. 纳米银复合材料与抗生素的联合抗菌性能及相关机制研究[J]. 生态毒理学报, 2020, 15(2): 39-49. WANG M Z, SUN H Y, LONG X, et al. Combined antibacterial property and mechanism of nanosilver composities and antibiotics against bacteria[J]. Asian J Ecotoxicol, 2020, 15(2): 39-49. [20] DANIELLE M S, ZHANG Y, DENG H, et al. Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant salmonella typhimurium DT104[J]. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 2015, 33(3): 369-384 [21] DENG H, DANIELLE M S, ZHANG Y, et al. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics[J]. Environ Sci Technol, 2016, 50(16): 8840-8848. [22] WANG Y, ZHENG Y Q, HUANG C Z, et al. Synthesis of Ag Nanocubes 18~32 nm in edge length: the effects of polyol on reduction kinetics, size control, and reproducibility[J]. J Am Chem Soc, 2013, 5(135): 1941-1951. [23] LI P, LI J, WU C Z, et al. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles[J]. Nano, 2005, 9(16): 1912-1917. [24] XUZ C, HOU Y L, SUN S H. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties[J]. J Am Chem Soc, 2007, 28(129): 8698-8699. [25] CHENB, JIAO X L, CHEN D R. Size-controlled and size-designed synthesis of nano/submicrometer Ag particles[J]. Cryst Growth Des, 2010, 10(8): 3378-3386. [26] DENG H, DANIELLE M S, ZHANG Y, et al. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics[J]. Sci Technol, 2016, 16(50): 8840-8848. [27] MOHAMMED F A, KULANDAIVELU B, MORUKATTU G, et al. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria[J]. Nanomedicine: NBM, 2010, 1(6): 103-109. [28] ZHANG Y J, BOYD S A, TEPPEN B J, et al. Role of tetracycline speciation in the bioavailability to Escherichia coli for uptake and expression of antibiotic resistance[J]. Environ Sci Technol, 2014, 9(48): 4893-4900. [29] SONGJ X, RENSING C, PETER E H, et al. Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil[J]. Environ Sci Technol, 2017, 5(51): 3040-3047. [30] XU L, WANG Y Y, HUANG J, et al. Silver nanoparticles: synthesis, medical applications and biosafety[J]. Theranostics, 2020, 20(10): 8996-9031. [31] SANGSUWAN A, KAWASAKI H, MATSUMURA Y, et al. Antimicrobial silver nanoclusters bearing biocompatible phosphorylcholine based zwitterionic protects[J]. Bioconjugate Chem, 2016, 10(27): 2527-2533. [32] XIU Z M, MA J. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions[J]. Environ Sci Technol, 2011, 20(45): 9003-9008. |