[1] | Germain M E,Knapp M J.Optical Explosives Detection:From Color Changes to Fluorescence Turn-On[J]. Chem Soc Rev,2009,38(9):2543-2555. | [2] | Salinas Y,Martinez-Manez R,Marcos M D,et al. Optical Chemosensors and Reagents to Detect Explosives[J]. Chem Soc Rev,2012,41(3):1261-1296. | [3] | Senthamizhan A,Celebioglu A,Bayir S,et al. Highly Fluorescent Pyrene-Functional Polystyrene Copolymer Nanofibers for Enhanced Sensing Performance of Tnt[J]. ACS Appl Mater Interfaces,2015,7(38):21038-21046. | [4] | Bhalla V,Kaur S,Vij V,et al. Mercury-Modulated Supramolecular Assembly of a Hexaphenylbenzene Derivative for Selective Detection of Picric Acid[J]. Inorg Chem,2013,52(9):4860-4865. | [5] | Zhang H Q,Euler W B.Detection of Gas-Phase Explosive Analytes Using Fluorescent Spectroscopy of Thin Films of Xanthene Dyes[J]. Sens Actuators,B,2016,225:553-562. | [6] | Kartha K K,Babu S S,Srinivasan S,et al. Attogram Sensing of Trinitrotoluene with a Self-Assembled Molecular Gelator[J]. J Am Chem Soc,2012,134(10):4834-4841. | [7] | Liu X,Xu Y,Jiang D.Conjugated Microporous Polymers as Molecular Sensing Devices:Microporous Architecture Enables Rapid Response and Enhances Sensitivity in Fluorescence-On and Fluorescence-Off Sensing[J]. J Am Chem Soc,2012,134(21):8738-8741. | [8] | Rochat S,Swager T M.Conjugated Amplifying Polymers for Optical Sensing Applications[J]. ACS Appl Mater Interfaces,2013,5(11):4488-4502. | [9] | Yang Jye-Shane S T M. Porous Shape Persistent Fluorescent Polymer Films:An Approach to TNT Sensory Material[J]. J Am Chem Soc,1998,120(21):5321-5322. | [10] | Wang A,Cui Y,Tao F,et al. Fluorescent Film Sensor for Nitroaromatics Prepared via Grafting a Conjugated Polymer on a Glass Slide Surface[J]. Russ J Phys Chem A,2016,90(2):399-405. | [11] | Zhou L L,Li M,Lu H Y,et al. Benzo[5]helicene-based Conjugated Polymers:Synthesis, Photophysical Properties, and Application for the Detection of Nitroaromatic Explosives[J]. Polym Chem,2016,7(2):310-318. | [12] | Thomas S W,III,Joly G D,Swager T M. Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers[J]. Chem Rev,2007,107(4):1339-1386. | [13] | Sun X,Wang Y,Lei Y.Fluorescence Based Explosive Detection:From Mechanisms to Sensory Materials[J]. Chem Soc Rev,2015,44(22):8019-8061. | [14] | Chang C P,Chao C Y,Huang J H,et al. Fluorescent Conjugated Polymer Films as TNT Chemosensors[J]. Synth Met,2004,144(3):297-301. | [15] | Chen L H,McBranch D,Wang R,et al. Surfactant-Induced Modification of Quenching of Conjugated Polymer Fluorescence by Electron Acceptors:Applications for Chemical Sensing[J]. Chem Phys Lett,2000,330(1/2):27-33. | [16] | Duniho T L,Laughlin B J,Buelt A A,et al. Conjugated Polymers for the Fluorescent Detection of Nitroaromatics:Influence of Side-Chain Sterics and Pi-System Electronics[J]. J Polym Sci,Part A:Polym Chem,2014,52(10):1487-1492. | [17] | Gopalakrishnan D,Dichtel W R.Direct Detection of RDX Vapor Using a Conjugated Polymer Network[J]. J Am Chem Soc,2013,135(22):8357-8362. | [18] | Feng L,Li H,Qu Y,et al. Detection of TNT Based on Conjugated Polymer Encapsulated in Mesoporous Silica Nanoparticles Through FRET[J]. Chem Commun,2012,48(38):4633-4635. | [19] | Zhang H,Feng L,Liu B,et al. Conjugation of PPV Functionalized Mesoporous Silica Nanoparticles with Graphene Oxide for Facile and Sensitive Fluorescence Detection of TNT in Water Through FRET[J]. Dyes Pigm,2014,101:122-129. | [20] | Cotts P M,Swager T M,Zhou Q.Equilibrium Flexibility of a Rigid Linear Conjugated Polymer[J]. Macromolecules,1996,29(23):7323-7328. | [21] | Yang J S,Swager T M.Porous Shape Persistent Fluorescent Polymer Films:An Approach to TNT Sensory Materials[J]. J Am Chem Soc,1998,120(21):5321-5322. | [22] | Zyryanov G V,Palacios M A,Anzenbacher P Jr.Simple Molecule-Based Fluorescent Sensors for Vapor Detection of TNT[J]. Org Lett,2008,10(17):3681-3684. | [23] | Yamaguchi S,Swager T M.Oxidative Cyclization of Bis(Biaryl)Acetylenes:Synthesis and Photophysics of Dibenzo G,P Chrysene-Based Fluorescent Polymers[J]. J Am Chem Soc,2001,123(48):12087-12088. | [24] | Zahn S,Swager T M.Three-Dimensional Electronic Delocalization in Chiral Conjugated Polymers[J]. Angew Chem Int Ed,2002,41(22):4225-4230. | [25] | Cox J R,Mueller P,Swager T M.Interrupted Energy Transfer:Highly Selective Detection of Cyclic Ketones in the Vapor Phase[J]. J Am Chem Soc,2011,133(33):12910-12913. | [26] | He G,Yan N,Yang J,et al. Pyrene-Containing Conjugated Polymer-Based Fluorescent Films for Highly Sensitive and Selective Sensing of TNT in Aqueous Medium[J]. Macromolecules,2011,44(12):4759-4766. | [27] | Sabatani E,Kalisky Y,Berman A,et al. Photoluminescence of Polydiacetylene Membranes on Porous Silicon Utilized for Chemical Sensors[J]. Opt Mater,2008,30(11):1766-1774. | [28] | Lee W E,Oh C J,Kang I K,et al. Diphenylacetylene Polymer Nanofiber Mats Fabricated by Freeze Drying:Preparation and Application for Explosive Sensors[J]. Macromol Chem Phys,2010,211(17):1900-1908. | [29] | Liang Z,Chen H,Wang X,et al. F127/Conjugated Polymers Fluorescent Micelles for Trace Detection of Nitroaromatic Explosives[J]. Dyes Pigm,2016,125:367-374. | [30] | Marks P,Cohen S,Levine M.Highly Efficient Quenching of Nanoparticles for the Detection of Electron-Deficient Nitroaromatics[J]. J Polym Sci,Part A:Polym Chem,2013,51(19):4150-4155. | [31] | Xu B,Xu Y,Wang X,et al. Porous Films Based on a Conjugated Polymer Gelator for Fluorescent Detection of Explosive Vapors[J]. Polym Chem,2013,4(19):5056-5059. | [32] | Venkatramaiah N,Kumar S,Patil S.Fluoranthene Based Fluorescent Chemosensors for Detection of Explosive Nitroaromatics[J]. Chem Commun,2012,48(41):5007-5009. | [33] | Leng H,Wu W.Synthesis of a Novel Fluorene-Based Conjugated Polymer with Pendent Bulky Caged Adamantane Moieties and Its Application in the Detection of Trace DNT Explosives[J]. React Funct Polym,2012,72(3):206-211. | [34] | Nie H,Zhao Y,Zhang M,et al. Detection of TNT Explosives with a New Fluorescent Conjugated Polycarbazole Polymer[J]. Chem Commun,2011,47(4):1234-1236. | [35] | Wang D H,Cui Y Z,Tao F R,et al. A Novel Film of Conjugated Polymer Grafted onto Gelatin for Detecting Nitroaromatics Vapor with Excellent Inhibiting Photobleaching[J]. Sens Actuators,B,2016,225:319-326. | [36] | Kim H N,Guo Z,Zhu W,et al. Recent Progress on Polymer-Based Fluorescent and Colorimetric Chemosensors[J]. Chem Soc Rev,2011,40(1):79-93. | [37] | Nagarjuna G,Kumar A,Kokil A,et al. Enhancing Sensing of Nitroaromatic Vapours by Thiophene-Based Polymer Films[J]. J Mater Chem,2011,21(41):16597-16602. | [38] | Balan B,Vijayakumar C,Tsuji M,et al. Detection and Distinction of DNT and TNT with a Fluorescent Conjugated Polymer Using the Microwave Conductivity Technique[J]. J Phys Chem B,2012,116(34):10371-10378. | [39] | Chen S,Zhang Q,Zhang J,et al. Synthesis of Two Conjugated Polymers as TNT Chemosensor Materials[J]. Sens Actuators,B,2010,149(1):155-160. | [40] | Zarei A R,Ghazanchayi B.Design and Fabrication of Optical Chemical Sensor for Detection of Nitroaromatic Explosives Based on Fluorescence Quenching of Phenol Red Immobilized Polyvinyl Alcohol) Membrane[J]. Talanta,2016,150:162-168. | [41] | Saxena A,Fujiki M,Rai R,et al. Fluoroalkylated Polysilane Film as a Chemosensor for Explosive Nitroaromatic Compounds[J]. Chem Mater,2005,17(8):2181-2185. | [42] | Hussain S,Malik A H,Afroz M A,et al. Ultrasensitive Detection of Nitroexplosive - Picric Acid Via a Conjugated Polyelectrolyte in Aqueous Media and Solid Support[J]. Chem Commun,2015,51(33):7207-7210. | [43] | Malik A H,Hussain S,Kalita A,et al. Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-Explosive Picric Acid on Multiple Platforms[J]. ACS Appl Mater Interfaces,2015,7(48):26968-26976. | [44] | Rahman M,Harmon H J.Absorbance Change and Static Quenching of Fluorescence of Meso-Tetra(4-Sulfonatophenyl)Porphyrin(TPPS) by Trinitrotoluene(TNT)[J]. Spectrochim Acta,Part A,2006,65(3-4):901-906. | [45] | Hikal W M,Harmon H J.Early Events in 2,4,6-Trinitrotoluene(TNT) Degradation by Porphyrins:Binding of TNT to Porphyrin by Hydrophobic and Hydrogen Bonds[J]. J Hazard Mater,2008,154(1-3):826-831. | [46] | Venkatramaiah N,Pereira C F,Mendes R F,et al. Phosphonate Appended Porphyrins as Versatile Chemosensors for Selective Detection of Trinitrotoluene[J]. Anal Chem,2015,87(8):4515-4522. | [47] | Swamy C A P,Thilagar P. Polyfunctional Lewis Acids:Intriguing Solid-State Structure and Selective Detection and Discrimination of Nitroaromatic Explosives[J]. Chem Eur J,2015,21(24):8874-8882. | [48] | Lee Y H,Liu H,Lee J Y,et al. Dipyrenylcalix[4]arene-A Fluorescence-Based Chemosensor for Trinitroaromatic Explosives[J]. Chem Eur J,2010,16(20):5895-5901. | [49] | Kim S B,Lee E B,Choi J H,et al. Simple Fluorescent Chemosensors for TNT:One-Step Synthesis[J]. Tetrahedron,2013,69(23):4652-4656. | [50] | Singla P,Kaur P,Singh K.Discrimination in Excimer Emission Quenching of Pyrene by Nitroaromatics[J]. Tetrahedron Lett,2015,56(18):2311-2314. | [51] | Chen W,Zuckerman N B,Konopelski J P,et al. Pyrene-Functionalized Ruthenium Nanoparticles as Effective Chemosensors for Nitroaromatic Derivatives[J]. Anal Chem,2010,82(2):461-465. | [52] | Venkatramaiah N,Firmino A D G,Paz F A A,et al. Fast Detection of Nitroaromatics Using Phosphonate Pyrene Motifs as Dual Chemosensors[J]. Chem Commun,2014,50(68):9683-9686. | [53] | Vijayakumar C,Tobin G,Schmitt W,et al. Detection of Explosive Vapors with a Charge Transfer Molecule:Self-Assembly Assisted Morphology Tuning and Enhancement in Sensing Efficiency[J]. Chem Commun,2010,46(6):874-876. | [54] | Roy B,Bar A K,Gole B,et al. Fluorescent Tris-Imidazolium Sensors for Picric Acid Explosive[J]. J Org Chem,2013,78(3):1306-1310. | [55] | Niamnont N,Kimpitak N,Wongravee K,et al. Tunable Star-Shaped Triphenylamine Fluorophores for Fluorescence Quenching Detection and Identification of Nitro-Aromatic Explosives[J]. Chem Commun,2013,49(8):780-782. | [56] | Pramanik S,Bhalla V,Kumar M.Hexaphenylbenzene-Based Fluorescent Aggregates for Ratiometric Detection of Cyanide Ions at Nanomolar Level:Set-Reset Memorized Sequential Logic Device[J]. ACS Appl Mater Interfaces,2014,6(8):5930-5939. | [57] | Meaney M S,McGuffin V L. Investigation of Common Fluorophores for the Detection of Nitrated Explosives by Fluorescence Quenching[J]. Anal Chim Acta,2008,610(1):57-67. | [58] | Peveler W J,Roldan A,Hollingsworth N,et al. Multichannel Detection and Differentiation of Explosives with a Quantum Dot Array[J]. ACS Nano,2016,10(1):1139-1146. | [59] | An N,Gonzalez C M,Sinelnikov R,et al. Detection of Nitroaromatics in the Solid, Solution, and Vapor Phases Using Silicon Quantum Dot Sensors[J]. Nanotechnology,2016,27(10):105501. | [60] | Yi K Y.Application of Cdse Quantum Dots for the Direct Detection of Tnt[J]. Forensic Sci Int,2016,259:101-105. | [61] | Chen Y,Chen Z,He Y,et al. L-Cysteine-Capped CdTe QD-Based Sensor for Simple and Selective Detection of Trinitrotoluene[J]. Nanotechnology,2010,21(12):125502. | [62] | Zhang K,Zhou H,Mei Q,et al. Instant Visual Detection of Trinitrotoluene Particulates on Various Surfaces by Ratiometric Fluorescence of Dual-Emission Quantum Dots Hybrid[J]. J Am Chem Soc,2011,133(22):8424-8427. | [63] | Zhang K,Yang L,Zhu H,et al. Selective Visual Detection of Trace Trinitrotoluene Residues Based on Dual-Color Fluorescence of Graphene Oxide-Nanocrystals Hybrid Probe[J]. Analyst,2014,139(10):2379-2385. | [64] | Fan L,Hu Y,Wang X,et al. Fluorescence Resonance Energy Transfer Quenching at the Surface of Graphene Quantum Dots for Ultrasensitive Detection of Tnt[J]. Talanta,2012,101:192-197. | [65] | Liu S,Shi F,Chen L,et al. Bovine Serum Albumin Coated CuInS2 Quantum Dots as a Near-Infrared Fluorescence Probe for 2,4,6-Trinitrophenol Detection[J]. Talanta,2013,116:870-875. | [66] | Niu Q,Gao K,Lin Z,et al. Amine-Capped Carbon Dots as a Nanosensor for Sensitive and Selective Detection of Picric Acid in Aqueous Solution Via Electrostatic Interaction[J]. Anal Methods,2013,5(21):6228-6233. | [67] | Chen H Y,Ruan L W,Jiang X,et al. Trace Detection of Nitro Aromatic Explosives by Highly Fluorescent g-C3N4 Nanosheets[J]. Analyst,2015,140(2):637-643. | [68] | Liao Y Z,Strong V,Wang Y,et al. Oligotriphenylene Nanofiber Sensors for Detection of Nitro-Based Explosives[J]. Adv Funct Mater,2012,22(4):726-735. | [69] | Li X G,Liao Y Z,Huang M R,et al. Ultra-Sensitive Chemosensors for Fe(Ⅲ) and Explosives Based on Highly Fluorescent Oligofluoranthene[J]. Chem Sci,2013,4(5):1970-1978. | [70] | Ding L,Fang Y.Chemically Assembled Monolayers of Fluorophores as Chemical Sensing Materials[J]. Chem Soc Rev,2010,39(11):4258-4273. | [71] | Du H,He G,Liu T,et al. Preparation of Pyrene-Functionalized Fluorescent Film with a Benzene Ring in Spacer and Sensitive Detection to Picric Acid in Aqueous Phase[J]. J Photochem Photobiol,A,2011,217(2-3):356-362. | [72] | Ding L,Liu Y,Cao Y,et al. A Single Fluorescent Self-Assembled Monolayer Film Sensor with Discriminatory Power[J]. J Mater Chem,2012,22(23):11574-11582. | [73] | Ma Y,Li H,Peng S,et al. Highly Selective and Sensitive Fluorescent Paper Sensor for Nitroaromatic Explosive Detection[J]. Anal Chem,2012,84(19):8415-8421. | [74] | Feng L,Wang C,Ma Z,et al. 8-Hydroxyquinoline Functionalized ZnS Nanoparticles Capped with Amine Groups:A Fluorescent Nanosensor for the Facile and Sensitive Detection of Tnt through Fluorescence Resonance Energy Transfer[J]. Dyes Pigm,2013,97(1):84-91. | [75] | Zou W S,Wang Y Q,Wang F,et al. Selective Fluorescence Response and Magnetic Separation Probe for 2,4,6-Trinitrotoluene Based on Iron Oxide Magnetic Nanoparticles[J]. Anal Bioanal Chem,2013,405(14):4905-4912. | [76] | Xu Y,Li B,Li W,et al. “ICT-Not-Quenching” Near Infrared Ratiometric Fluorescent Detection of Picric Acid in Aqueous Media[J]. Chem Commun,2013,49(42):4764-4766. | [77] | Sivaraman G,Vidya B,Chellappa D.Rhodamine Based Selective Turn-on Sensing of Picric Acid[J]. RSC Adv,2014,4(58):30828-30831. | [78] | Madhu S,Bandela A,Ravikanth M.Bodipy Based Fluorescent Chemodosimeter for Explosive Picric Acid in Aqueous Media and Rapid Detection in the Solid State[J]. RSC Adv,2014,4(14):7120-7123. | [79] | Gole B,Shanmugaraju S,Bar A K,et al. Supramolecular Polymer for Explosives Sensing:Role of H-Bonding in Enhancement of Sensitivity in the Solid State[J]. Chem Commun,2011,47(36):10046-10048. | [80] | Shanmugaraju S,Jadhav H,Karthik R,et al. Electron Rich Supramolecular Polymers as Fluorescent Sensors for Nitroaromatics[J]. RSC Adv,2013,3(15):4940-4950. | [81] | Gole B,Song W,Lackinger M,et al. Explosives Sensing by Using Electron-Rich Supramolecular Polymers:Role of Intermolecular Hydrogen Bonding in Significant Enhancement of Sensitivity[J]. Chem Eur J,2014,20(42):13662-13680. | [82] | Bahring S,Martin-Gomis L,Olsen G,et al. Design and Sensing Properties of a Self-Assembled Supramolecular Oligomer[J]. Chem Eur J,2016,22(6):1958-1967. | [83] | Ponnu A,Anslyn E V.A Fluorescence-Based Cyclodextrin Sensor to Detect Nitroaromatic Explosives[J]. Supramol Chem,2010,22(1):65-71. | [84] | Feng L,Tong C,He Y,et al. A Novel Fret-Based Fluorescent Chemosensor of Beta-Cyclodextrin Derivative for TNT Detection in Aqueous Solution[J]. J Lumin,2014,146:502-507. | [85] | Algarra M,Campos B B,Miranda M S,et al. CdSe Quantum Dots Capped PAMAM Dendrimer Nanocomposites for Sensing Nitroaromatic Compounds[J]. Talanta,2011,83(5):1335-1340. | [86] | Hu Z,Deibert B J,Li J.Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection[J]. Chem Soc Rev,2014,43(16):5815-5840. | [87] | Zhang M,Zhang L,Xiao Z,et al. Pentiptycene-Based Luminescent Cu(Ⅱ) MOF Exhibiting Selective Gas Adsorption and Unprecedentedly High-Sensitivity Detection of Nitroaromatic Compounds(Nacs)[J]. Sci Rep,2016,6:20672. | [88] | Nagarkar S S,Joarder B,Chaudhari A K,et al. Highly Selective Detection of Nitro Explosives by a Luminescent Metal-Organic Framework[J]. Angew Chem Int Ed,2013,52(10):2881-2885. | [89] | Nagarkar S S,Desai A V,Ghosh S K.A Fluorescent Metal-Organic Framework for Highly Selective Detection of Nitro Explosives in the Aqueous Phase[J]. Chem Commun,2014,50(64):8915-8918. | [90] | Chaudhari A K,Nagarkar S S,Joarder B,et al. A Continuous Pi-Stacked Starfish Array of Two-Dimensional Luminescent Mof for Detection of Nitro Explosives[J]. Cryst Growth Des,2013,13(8):3716-3721. | [91] | Dalapati S,Jin S,Gao J,et al. An Azine-Linked Covalent Organic Framework[J]. J Am Chem Soc,2013,135(46):17310-17313. | [92] | Liu J,Yang S,Li F,et al. Highly Fluorescent Polymeric Nanoparticles Based on Melamine for Facile Detection of TNT in Soil[J]. J Mater Chem A,2015,3(18):10069-10076. | [93] | Wang H,Liang Y,Xie H,et al. Unexpected SiMe3 Effect on Color-Tunable and Fluorescent Probes of Dendritic Polyphenyl Naphthalimides with Aggregation-Induced Emission Enhancement[J]. J Mater Chem C,2016,4(4):745-750. | [94] | Zhao Z,Jiang T,Guo Y,et al. Silole-Containing Poly(Silylenevinylene)S:Synthesis, Characterization, Aggregation-Enhanced Emission, and Explosive Detection[J]. J Polym Sci,Part A:Polym Chem,2012,50(11):2265-2274. | [95] | Li J,Liu J,Lam J W Y,et al. Poly(Arylene Ynonylene) with an Aggregation-Enhanced Emission Characteristic:A Fluorescent Sensor for Both Hydrazine and Explosive Detection[J]. RSC Adv,2013,3(22):8193-8196. | [96] | Hu R,Leung N L C,Tang B Z. AIE Macromolecules:Syntheses, Structures and Functionalities[J]. Chem Soc Rev,2014,43(13):4494-4562. | [97] | Qin A,Tang L,Lam J W Y,et al. Metal-Free Click Polymerization:Synthesis and Photonic Properties of Poly(Aroyltriazole)s[J]. Adv Funct Mater,2009,19(12):1891-1900. | [98] | Lu P,Lam J W Y,Liu J,et al. Aggregation-Induced Emission in a Hyperbranched Poly(Silylenevinylene) and Superamplification in Its Emission Quenching by Explosives[J]. Macromol Rapid Commun,2010,31(9/10):834-839. | [99] | Hu R,Lam J W Y,Liu J,et al. Hyperbranched Conjugated Poly(Tetraphenylethene):Synthesis, Aggregation-Induced Emission, Fluorescent Photopatterning, Optical Limiting and Explosive Detection[J]. Polym Chem,2012,3(6):1481-1489. | [100] | Li H,Wu H,Zhao E,et al. Hyperbranched Poly(Aroxycarbonyltriazole)s:Metal-Free Click Polymerization, Light Refraction, Aggregation-Induced Emission, Explosive Detection, and Fluorescent Patterning[J]. Macromolecules,2013,46(10):3907-3914. | [101] | Hu R,Luis Maldonado J,Rodriguez M,et al. Luminogenic Materials Constructed from Tetraphenylethene Building Blocks:Synthesis, Aggregation-Induced Emission, Two-Photon Absorption, Light Refraction, and Explosive Detection[J]. J Mater Chem,2012,22(1):232-240. | [102] | Zhou H,Li J,Chua M H,et al. Poly(Acrylate) with a Tetraphenylethene Pendant with Aggregation-Induced Emission(AIE) Characteristics:Highly Stable AIE-Active Polymer Nanoparticles for Effective Detection of Nitro Compounds[J]. Polym Chem,2014,5(19):5628-5637. | [103] | Liu J,Zhong Y,Lu P,et al. A Superamplification Effect in the Detection of Explosives by a Fluorescent Hyperbranched Poly(Silylenephenylene) with Aggregation-Enhanced Emission Characteristics[J]. Polym Chem,2010,1(4):426-429. | [104] | Zhou H,Ye Q,Neo W T,et al. Electrospun Aggregation-Induced Emission Active Poss-Based Porous Copolymer Films for Detection of Explosives[J]. Chem Commun,2014,50(89):13785-13788. | [105] | Dong W,Pan Y,Fritsch M,et al. High Sensitivity Sensing of Nitroaromatic Explosive Vapors Based on Polytriphenylamines with AIE-Active Tetraphenylethylene Side Groups[J]. J Polym Sci,Part A:Polym Chem,2015,53(15):1753-1761. | [106] | Kaur S,Gupta A,Bhalla V,et al. Pentacenequinone Derivatives:Aggregation-Induced Emission Enhancement, Mechanism and Fluorescent Aggregates for Superamplified Detection of Nitroaromatic Explosives[J]. J Mater Chem C,2014,2(35):7356-7363. | [107] | Xu B,Wu X,Li H,et al. Selective Detection of TNT and Picric Acid by Conjugated Polymer Film Sensors with Donor-Acceptor Architecture[J]. Macromolecules,2011,44(13):5089-5092. | [108] | Feng H T,Wang J H,Zheng Y S.CH3-π Interaction of Explosives with Cavity of a TPE Macrocycle:The Key Cause for Highly Selective Detection of TNT[J]. ACS Appl Mater Interfaces,2014,6(22):20067-20074. | [109] | Vij V,Bhalla V,Kumar M.Attogram Detection of Picric Acid by Hexa-Peri-Hexabenzocoronene-Based Chemosensors by Controlled Aggregation-Induced Emission Enhancement[J]. ACS Appl Mater Interfaces,2013,5(11):5373-5380. | [110] | Pramanik S,Bhalla V,Kumar M.Mercury Assisted Fluorescent Supramolecular Assembly of Hexaphenylbenzene Derivative for Femtogram Detection of Picric Acid[J]. Anal Chim Acta,2013,793:99-106. | [111] | Li D,Liu J,Kwok R T K,et al. Supersensitive Detection of Explosives by Recyclable AIE Luminogen-Functionalized Mesoporous Materials[J]. Chem Commun,2012,48(57):7167-7169. | [112] | Miao C,Li D,Zhang Y,et al. AIE Luminogen Functionalized Mesoporous Silica Nanoparticles as Efficient Fluorescent Sensor for Explosives Detection in Water[J]. Micropor Mesopor Mater,2014,196:46-50. | [113] | Bejoymohandas K S,George T M,Bhattacharya S,et al. AIPE-Active Green Phosphorescent Iridium(Ⅲ) Complex Impregnated Test Strips for the Vapor-Phase Detection of 2,4,6-Trinitrotoluene(TNT)[J]. J Mater Chem C,2014,2(3):515-523. | [114] | Tao S,Yin J,Li G.High-Performance TNT Chemosensory Materials Based on Nanocomposites with Bimodal Porous Structures[J]. J Mater Chem,2008,18(40):4872-4878. | [115] | Kim Y J,Seong D Y.Effect of Polymer Matrix on the Sensitivity of Microfibrous Fluorescent Chemosensor Containing Dendritic Porphyrin for the Detection of Dopamine[J]. J Mater Sci,2013,48(9):3486-3493. | [116] | Xing C,Guan J,Li Y,et al. Effect of a Room-Temperature Ionic Liquid on the Structure and Properties of Electrospun Poly(vinylidene fluoride) Nanofibers[J]. ACS Appl Mater Interfaces,2014,6(6):4447-4457. | [117] | Jo S,Kim J,Noh J,et al. Conjugated Polymer Dots-on-Electrospun Fibers as a Fluorescent Nanofibrous Sensor for Nerve Gas Stimulant[J]. ACS Appl Mater Interfaces,2014,6(24):22884-22893. | [118] | Lu P,Xia Y.Maneuvering the Internal Porosity and Surface Morphology of Electrospun Polystyrene Yarns by Controlling the Solvent and Relative Humidity[J]. Langmuir,2013,29(23):7070-7078. | [119] | Zhang Y,Kim J J,Chen D,et al. Electrospun Polyaniline Fibers as Highly Sensitive Room Temperature Chemiresistive Sensors for Ammonia and Nitrogen Dioxide Gases[J]. Adv Funct Mater,2014,24(25):4005-4014. | [120] | Wu J,Wang N,Zhao Y,et al. Electrospinning of Multilevel Structured Functional Micro-/Nanofibers and Their Applications[J]. J Mater Chem A,2013,1(25):7290-7305. | [121] | Lin M,Zou H Y,Yang T,et al. An Inner Filter Effect Based Sensor of Tetracycline Hydrochloride as Developed by Loading Photoluminescent Carbon Nanodots in the Electrospun Nanofibers[J]. Nanoscale,2016,8(5):2999-3007. | [122] | del Mercato L L,Moffa M,Rinaldi R,et al. Ratiometric Organic Fibers for Localized and Reversible Ion Sensing with Micrometer-Scale Spatial Resolution[J]. Small,2015,11(48):6417-6424. | [123] | Hua K-Y,Deng C-M,He C,et al. Organic Semiconductors-Coated Polyacrylonitrile(PAN) Electrospun Nanofibrous Mats for Highly Sensitive Chemosensors via Evanescent-Wave Guiding Effect[J]. Chinese Chem Lett,2013,24(7):643-646. | [124] | Li Z,Li H,Shi C,et al. Naked-Eye-Based Highly Selective Sensing of Fe3+ and Further for PPI with Nano Copolymer Film[J]. Sens Actuators,B,2016,226:127-134. | [125] | Lin H J,Chen C Y.Thermo-Responsive Electrospun Nanofibers Doped with 1,10-Phenanthroline-Based Fluorescent Sensor for Metal Ion Detection[J]. J Mater Sci,2016,51(3):1620-1631. | [126] | Raj S,Shankaran D R.Curcumin Based Biocompatible Nanofibers for Lead Ion Detection[J]. Sens Actuators,B,2016,226:318-325. | [127] | Senthamizhan A,Balusamy B,Aytac Z,et al. Ultrasensitive Electrospun Fluorescent Nanofibrous Membrane for Rapid Visual Colorimetric Detection of H2O2[J]. Anal Bioanal Chem,2016,408(5):1347-1355. | [128] | Long Y,Chen H,Yang Y,et al. Electrospun Nanofibrous Film Doped with a Conjugated Polymer for DNT Fluorescence Sensor[J]. Macromolecules,2009,42(17):6501-6509. | [129] | Long Y,Chen H,Wang H,et al. Highly Sensitive Detection of Nitroaromatic Explosives Using an Electrospun Nanofibrous Sensor Based on a Novel Fluorescent Conjugated Polymer[J]. Anal Chim Acta,2012,744:82-91. | [130] | Xue W,Zhang Y,Duan J,et al. A Highly Sensitive Fluorescent Sensor Based on Small Molecules Doped in Electrospun Nanofibers:Detection of Explosives as Well as Color Modulation[J]. J Mater Chem C,2015,3(31):8193-8199. | [131] | Wang Y,La A,Ding Y,et al. Novel Signal-Amplifying Fluorescent Nanofibers for Naked-Eye-Based Ultrasensitive Detection of Buried Explosives and Explosive Vapors[J]. Adv Funct Mater,2012,22(17):3547-3555. | [132] | Sun X,Liu Y,Shaw G,et al. Fundamental Study of Electrospun Pyrene-Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution[J]. ACS Appl Mater Interfaces,2015,7(24):13189-13197. | [133] | Tao S,Li G,Yin J.Fluorescent Nanofibrous Membranes for Trace Detection of TNT Vapor[J]. J Mater Chem,2007,17(26):2730-2736. | [134] | Yang Y,Wang H,Su K,et al. A Facile and Sensitive Fluorescent Sensor Using Electrospun Nanofibrous Film for Nitroaromatic Explosive Detection[J]. J Mater Chem,2011,21(32):11895-11900. | [135] | Lv Y Y,Xu W,Lin F W,et al. Electrospun Nanofibers of Porphyrinated Polyimide for the Ultra-Sensitive Detection of Trace TNT[J]. Sens Actuators,B,2013,184:205-211. | [136] | Ali M A,Chen S S Y,Cavaye H,et al. Diffusion of Nitroaromatic Vapours into Fluorescent Dendrimer Films for Explosives Detection[J]. Sens Actuators,B,2015,210:550-557. |
|