Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (10): 1519-1524.DOI: 10.19894/j.issn.1000-0518.240202
• Chemistry Teaching and Experiment Innovation • Previous Articles
Wen-Bin LUO(), Zi-Sheng CHAO, Jin-Cheng FAN
Received:
2024-07-02
Accepted:
2024-09-13
Published:
2024-10-01
Online:
2024-10-29
Contact:
Wen-Bin LUO
About author:
wenbin.luo@hotmail.comSupported by:
CLC Number:
Wen-Bin LUO, Zi-Sheng CHAO, Jin-Cheng FAN. Exploration and Practice of Energy Storage Polymer Materials Teaching under the Concept of Integrating Science and Education[J]. Chinese Journal of Applied Chemistry, 2024, 41(10): 1519-1524.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240202
应用领域 | 成果简介 | 涉及的知识点 | 参考文献 |
---|---|---|---|
可充电 电池 | 使用二苯并[a,e]戊二烯(DBP)作为中心连接体合成共轭纳米环聚合物,并使用共轭纳米环作为正极材料进行电荷存储。 | 高分子材料共聚合成。 | [ |
提出了一种混合聚合物/低聚物电池设计。 | 有机低聚物对高分子材料的复合改性。 | [ | |
燃料 电池 | 通过混合金属氧化物簇和聚乙烯醇缩丁醛来设计高功率密度燃料电池质子交换膜。 | 通过有机-无机杂化实现高分子材料改性。 | [ |
通过引入高度疏水性的全氟烷基,制备聚芳基哌啶聚合物主链的侧链氟化聚芳基哌啶阴离子交换膜内部具有互连的亲水通道疏水性聚合物。 | 通过共聚接枝反应合成高分子材料。 | [ | |
超级 电容器 | 二维有序介孔导电聚合物和三明治结构杂化材料的制备,用于超级电容器电极材料。 | 用功能性单体通过聚合得到储能高分子材料。 | [ |
制备了具有高离子电导率的凝胶聚合物电解质应用于固态超级电容器。 | 高分子材料的合成。 | [ | |
太阳能 电池 | 设计并合成了一种新的宽带隙聚合物,用作全聚合物太阳能电池电子供体。 | 高分子材料的合成。 | [ |
设计并合成了一种新型高性能聚噻吩衍生物,用于全聚合物太阳电池。 | 高分子材料的合成。 | [ |
Table 1 Research progress of energy storage polymer materials
应用领域 | 成果简介 | 涉及的知识点 | 参考文献 |
---|---|---|---|
可充电 电池 | 使用二苯并[a,e]戊二烯(DBP)作为中心连接体合成共轭纳米环聚合物,并使用共轭纳米环作为正极材料进行电荷存储。 | 高分子材料共聚合成。 | [ |
提出了一种混合聚合物/低聚物电池设计。 | 有机低聚物对高分子材料的复合改性。 | [ | |
燃料 电池 | 通过混合金属氧化物簇和聚乙烯醇缩丁醛来设计高功率密度燃料电池质子交换膜。 | 通过有机-无机杂化实现高分子材料改性。 | [ |
通过引入高度疏水性的全氟烷基,制备聚芳基哌啶聚合物主链的侧链氟化聚芳基哌啶阴离子交换膜内部具有互连的亲水通道疏水性聚合物。 | 通过共聚接枝反应合成高分子材料。 | [ | |
超级 电容器 | 二维有序介孔导电聚合物和三明治结构杂化材料的制备,用于超级电容器电极材料。 | 用功能性单体通过聚合得到储能高分子材料。 | [ |
制备了具有高离子电导率的凝胶聚合物电解质应用于固态超级电容器。 | 高分子材料的合成。 | [ | |
太阳能 电池 | 设计并合成了一种新的宽带隙聚合物,用作全聚合物太阳能电池电子供体。 | 高分子材料的合成。 | [ |
设计并合成了一种新型高性能聚噻吩衍生物,用于全聚合物太阳电池。 | 高分子材料的合成。 | [ |
1 | FENG Q K, ZHONG S L, PEI J Y, et al. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors[J]. Chem Rev, 2021, 122(3): 3820-3878. |
2 | SHI Y, PENG L L, DING Y, et al. Nanostructured conductive polymers for advanced energy storage[J]. Chem Soc Rev, 2015, 44(19): 6684-6696. |
3 | CHENG X L, PAN J, ZHAO Y, et al. Gel polymer electrolytes for electrochemical energy storage[J]. Adv Energy Mater, 2018, 8(7): 1702184. |
4 | 罗文斌, 晁自胜, 范金成. 面向培养拔尖创新人才的材料专业核心课程群建设[J]. 高分子通报, 2022, 7: 85-88. |
LUO W B, CHAO Z S, FAN J C. Group curriculum construction of materials science and engineering based on cultivating students′ innovation ability[J]. Polym Bull, 2022, 7: 111-115. | |
5 | 罗文斌, 晁自胜, 范金成. 新工科背景下《材料现代研究方法与测试技术》课程体系建设实践与探索[J]. 高分子通报, 2022, 8: 111-115. |
LUO W B, CHAO Z S, FAN J C. Practice and exploration of the construction of the course system of “modern research methods and testing technology of materials” under the background of emerging engineering education[J]. Polym Bull, 2022, 8: 111-115. | |
6 | 许昊翔, 蒲源, 吴登峰. 科教融合理念下化工类专业课程案例教学模式的探索与实践[J]. 中国大学教学, 2024, 5: 45-52. |
XU H X, PU Y, WU D F. Exploration and practice of case teaching mode for chemical engineering courses under the concept of integration of science and education[J]. China Univ Teach, 2024, 5: 45-52. | |
7 | 李振华, 沈雷. “科教深度融合”的高分子物理教学探索与实践[J]. 高分子通报, 2023, 12: 1740-1744. |
LI Z H, SHEN L. Exploration and practice of “deep science and education integration” in polymer physics teaching[J]. Polym Bull, 2023, 12: 1740-1744. | |
8 | BLOOM B S, ENGLEHART M D, FURST E J, et al. Taxonomy of educational objectives: the classification of educational goals. Handbook I: Cognitive domain[M]. White Plains, NY: Longman, 1956. |
9 | ANDERSON L W, KRATHWOHL D R. A taxonomy for learning, teaching and assessing: a revision of Bloom's taxonomy of educational objectives[M]. New York, NY: Longman, 2001. |
10 | 钟志贤. 促进学习者高阶思维发展的教学设计假设[J]. 电化教育研究, 2004, 12: 21-28. |
ZHONG Z X. Instructional design assumptions to promote learners' higher-order thinking development[J]. e-Educ Res, 2004, 12: 21-28. | |
11 | 董安美, 庄绍勇, 尚俊杰. 学生高阶思维在翻转课堂的课堂互动中的发生路径[J]. 现代教育技术, 2019, 29(2): 46-51. |
DONG A M, ZHUANG S Y, SHANG J J. Achievement pathway of higher-order thinking through classroom interactions in the flipped classroom[J]. Modern Educ Technol, 2019, 29(2): 46-51. | |
12 | 赵永生, 刘毳, 赵春梅. 高阶思维能力与项目式教学[J]. 高等工程教育研究, 2019. 6: 145-179. |
ZHAO Y S, LIU C, ZHAO C M. Cultivating higher-order thinking skills by project-based learning[J]. Res High Educ Eng, 2019. 6: 145-179. | |
13 | SEITZ P, BHOSALE M, RZESNY L, et al. Conjugated nanohoop polymers based on antiaromatic dibenzopentalenes for charge storage in organic batteries[J]. Angew Chem Int Ed, 2023, 62: e202306184. |
14 | CHEN Y, LENNARTZ P, LIU K, et al. Towards all-solid-state polymer batteries: going beyond PEO with hybrid concepts[J]. Adv Funct Mater, 2023, 33: 2300501. |
15 | LIU L, HUANG A, YANG J, et al. Supramolecular complexation of metal oxide cluster and non-fluorinated polymer for large-scale fabrication of proton exchange membranes for high-power-density fuel cells[J]. Angew Chem, 2024, 136: e202318355. |
16 | WU X, CHEN N, HU C, et al. Fluorinated poly(aryl piperidinium) membranes for anion exchange membrane fuel cells[J]. Adv Mater, 2023, 35: 2210432. |
17 | WEI F, ZHANG T, DONG R, et al. Solution-based self-assembly synthesis of two-dimensional-ordered mesoporous conducting polymer nanosheets with versatile properties[J]. Nat Protoc, 2023, 18: 2459-2484. |
18 | HOU P, GAO C, WANG J, et al. A semi-transparent polyurethane/porous wood composite gel polymer electrolyte for solid-state supercapacitor with high energy density and cycling stability[J]. Chem Eng J, 2023, 454: 139954. |
19 | WU P, DUAN Y, LI Y, et al. 18.6% Efficiency all-polymer solar cells enabled by a wide bandgap polymer donor based on Benzo[1,2-d:4,5-d′]bisthiazole[J]. Adv Mater, 2024, 36: 2306990. |
20 | AN M, BAI Q, JEONG S, et al. Polythiophene derivatives for efficient all-polymer solar cells[J]. Adv Energy Mater, 2023: 2301110. |
21 | LUO W, LIU Y, ZHANG Z, et al. Rational molecular design strategy of a carbonyl cathode for better aluminum organic batteries[J]. ACS Sustainable Chem Eng, 2023, 11: 11406-11414. |
[1] | Ling-Yao KONG, Ji-Yong ZHAO, Min-Jie QU, Hong-Hua WANG. Preparation and Characterization of Thermosetting Poly(aryl ether ketone) with High Carbonization Rate [J]. Chinese Journal of Applied Chemistry, 2024, 41(10): 1436-1444. |
[2] | Xiao-He WANG, Lin XU, Li FU. Research Progress of Surgical Sutures with Integrated Diagnostic and Therapeutic Functions [J]. Chinese Journal of Applied Chemistry, 2024, 41(10): 1399-1408. |
[3] | Zong-Hao HONG, Shi-Long WU, Quan CHEN. Nonlinear Elongational Rheology of Unentangled Poly(styrene-co-p-tert butyl styrene) Copolymers [J]. Chinese Journal of Applied Chemistry, 2024, 41(8): 1098-1106. |
[4] | Hong LI, De-Wen SUN. Kinetic Fabrication Strategy of Single Plumber′s Nightmare Network Mesostructure of Block Copolymers [J]. Chinese Journal of Applied Chemistry, 2024, 41(8): 1107-1115. |
[5] | Hao-Jun SUN, Xiao-Hu YI, Jian-Hua CHENG, Zhao-Hui SU. Quantitative Analysis of Meta-Aramid Units in Para-Aramids [J]. Chinese Journal of Applied Chemistry, 2024, 41(8): 1126-1130. |
[6] | Lian-Chao ZHU, Wen-Cang SHI. Influence of Strain Rate on Stress-Strain Behavior of Carbon Black Filled Styrene Butadiene Rubber Vulcanizate [J]. Chinese Journal of Applied Chemistry, 2024, 41(7): 959-965. |
[7] | Chao WANG, Yong-Jun PENG, Bo ZHU, Yi HAN. Thermal Stability and Shielding Performance of Boron Carbide/Lead/Polyethylene Composite Materials [J]. Chinese Journal of Applied Chemistry, 2024, 41(6): 890-898. |
[8] | Bo-Rui LIU, Chang-Jun MU, Yu BAN, Lei WANG, Qiu-Yan YAN, Heng-Chong SHI, Jing-Hua YIN, Shi-Fang LUAN. Structural Regulation and Antibacterial Properties of Poly (Sodium-p-Styrene Sulfonate) and Quaternary Phosphonium Surfactanls Complexes [J]. Chinese Journal of Applied Chemistry, 2024, 41(4): 521-528. |
[9] | Zheng ZHOU, Yi-Wei XIA, Jie JIN, Song-Qi ZHENG, Si-Yu ZHOU, Gui-Yan ZHAO. Preparation and Properties of Highly Toughened Poly(lactic acid)/ Ethylene-Butyl Acrylate-Glycidyl Methacrylate Graft Copolymer Blends [J]. Chinese Journal of Applied Chemistry, 2024, 41(4): 529-537. |
[10] | Hai-Gang SHI, Yan-Ni GUO. Design and Preparation of Flame Retardant and Hydrophobic Melamine Foam [J]. Chinese Journal of Applied Chemistry, 2024, 41(4): 538-546. |
[11] | Qian-Yu LI, Jie LIU, Tao TANG. Flame Retardancy of Polycarbonate/Short Carbon Fiber/Potassium 3‑(Phenylsulfonyl)benzenesulfonate Composites [J]. Chinese Journal of Applied Chemistry, 2023, 40(12): 1662-1671. |
[12] | Meng-Fei ZHANG, Jiu-Yang ZHANG. Frontier Applications of Polymer-Metal Composites [J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1581-1586. |
[13] | San-Rong LIU, Chao LIU, Qing-Bo ZHAO, Hong-Fu ZHAO, Ji-Fu BI. Research Progress of Rubber and Plastic Materials for Athletic Shoes [J]. Chinese Journal of Applied Chemistry, 2023, 40(10): 1376-1395. |
[14] | Lin-Feng WANG, Hui TIAN, Guang-Bi GONG, Chun-Ji WU, Bao-Li WANG, Dong-Mei CUI. Terpolymerization of Ethylene, Cyclic Olefin and 1-Octene Catalyzed by Rare Earth Complexes [J]. Chinese Journal of Applied Chemistry, 2023, 40(10): 1396-1404. |
[15] | Fan LIU, Shao-Yong HUANG, Quan CHEN. Static Crystallization and Shear Induced Crystallization of the Poly(L-lactic acid) Telechelic Ionomer [J]. Chinese Journal of Applied Chemistry, 2023, 40(10): 1412-1419. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||