Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (10): 1399-1408.DOI: 10.19894/j.issn.1000-0518.240140
• Review • Previous Articles
Xiao-He WANG1, Lin XU2, Li FU1()
Received:
2024-04-27
Accepted:
2024-08-18
Published:
2024-10-01
Online:
2024-10-29
Contact:
Li FU
About author:
fuli1127@jlu.edu.cnCLC Number:
Xiao-He WANG, Lin XU, Li FU. Research Progress of Surgical Sutures with Integrated Diagnostic and Therapeutic Functions[J]. Chinese Journal of Applied Chemistry, 2024, 41(10): 1399-1408.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240140
Material | Source | Absorbability | Configuration |
---|---|---|---|
Catgut Collagen Cotton Linen Nylon Silk | Natural Natural Natural Natural Natural Natural | Absorbable Absorbable Non-absorbable Non-absorbable Non-absorbable Non-absorbable | Monofilament Monofilament Multifilament Multifilament Monofilament Multifilament |
Polycaprolactone Poly(p-diaxanone) Poly(glycoloic acid) Poly(lactic acid) Poly(lactic-co-glycolic acid) Polyglyconate Polypropylene Polyamide Polybutester Polyester Polyurethane | Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic | Absorbable Absorbable Absorbable Absorbable Absorbable Absorbable Non-absorbable Non-absorbable Non-absorbable Non-absorbable Non-absorbable | Monofilament Monofilament Monofilament/Multifilament Monofilament/Multifilament Monofilament/Multifilament Monofilament Monofilament Monofilament/Multifilament Monofilament Multifilament Multifilament |
Table 1 Materials and types of surgical sutures
Material | Source | Absorbability | Configuration |
---|---|---|---|
Catgut Collagen Cotton Linen Nylon Silk | Natural Natural Natural Natural Natural Natural | Absorbable Absorbable Non-absorbable Non-absorbable Non-absorbable Non-absorbable | Monofilament Monofilament Multifilament Multifilament Monofilament Multifilament |
Polycaprolactone Poly(p-diaxanone) Poly(glycoloic acid) Poly(lactic acid) Poly(lactic-co-glycolic acid) Polyglyconate Polypropylene Polyamide Polybutester Polyester Polyurethane | Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic | Absorbable Absorbable Absorbable Absorbable Absorbable Absorbable Non-absorbable Non-absorbable Non-absorbable Non-absorbable Non-absorbable | Monofilament Monofilament Monofilament/Multifilament Monofilament/Multifilament Monofilament/Multifilament Monofilament Monofilament Monofilament/Multifilament Monofilament Multifilament Multifilament |
Fig.3 (A) Re-cultured colonies of tested bacterial strain on agar plates: a. bombyx mori silk fibroin, b. non-coated P.ricini waste suture, c. coated P.ricini waste suture[35]; (B) P.aeruginosa and S. aureus treated with unmodified and modified AgNPs of silk fibers: a. fluorescent micrographs, b. electron micrographs[39]
Fig. 4 (A)A schematic of the drug release electronic suture system with a conductive fiber strain sensor core and a thermos-responsive polymer shell containing drugs[56]?; (B) Schematic of the layered composition of BSS and illustration of the specific working relationships between the three layers of the shell to achieve its properties of wound sensing, cell growth promotion andbactericidal effects[57]
Fig.5 (A) Schematics of Cur@ZIF-8 decorated surgical sutures (SZC) with microenvironment pH-responsive release behavior and wound healing acceleration property[59]; (B) Schematic of drug release from drug-loaded sutures[62]
1 | ZHANG R, TIAN Y, PANG L, et al. Wound microenvironment-responsive protein hydrogel drug-loaded system with accelerating healing and antibacterial property[J]. ACS Appl Mater Interfaces, 2022, 14(8): 10187-10199. |
2 | ABBAS M, HUSSAIN T, ARSHAD M, et al. Wound healing potential of curcumin cross-linked chitosan/polyvinyl alcohol[J]. Int J Biologic Macromol, 2019, 140: 871-876. |
3 | VIVCHARENKO V, TRZASKOWSKA M, PRZEKORA A. Wound dressing modifications for accelerated healing of infected wounds[J]. Int J Mol Sci, 2023, 24(8): 7193. |
4 | CHEN X, TAN P, WEN Y, et al. Facile scalable one-step wet-spinning of surgical sutures with shape memory function and antibacterial activity for wound healing[J]. Chin Chem Lett, 2020, 31(6): 1499-1503. |
5 | ALSHOMER F, MADHAVAN A, PATHAN O, et al. Bioactive sutures: a review of advances in surgical suture functionalisation[J]. Current Med Chem, 2017, 24(2): 215-223. |
6 | TANIGUCHI H, MATSUMOTO-ODA A. Wound healing in wild male baboons: estimating healing time from wound size[J]. PLoS One, 2018, 13(10): 1-13. |
7 | MUYSOMS F E, ANTONIOU S A, BURY K, et al. European Hernia Society guidelines on the closure of abdominal wall incisions[J]. Hernia, 2015, 19(1): 1-24. |
8 | SETIAWATI A, JANG D, CHO D, et al. An accelerated wound-healing surgical suture engineered with an extracellular matrix[J]. Adv Healthc Mater, 2021, 10(6): 2192-2640. |
9 | PHAN P T, HOANG T T, THAI M T, et al. Smart surgical sutures using soft artificial muscles[J]. Sci Rep, 2021, 11(1): 22420. |
10 | YANG Y, YANG S B, WANG Y G, et al. Bacterial inhibition potential of quaternised chitosan-coated VICRYL absorbable suture: an in vitro and in vivo study[J]. J Orthop Translat, 2017, 8: 49-61. |
11 | PARELL G J, BECKER G D. Comparison of absorbable with nonabsorbable sutures in closure of facial skin wounds[J]. Arch Facial Plastic Surgery, 2003, 5(6): 488-490. |
12 | BYRNE M, ALY A. The surgical suture[J]. Aesthetic Surgery J, 2019, 39: S67-S72. |
13 | ABHARI R E, MARTINS J A, MORRIS H L, et al. Synthetic sutures: clinical evaluation and future developments[J]. J Biomater Appl, 2017, 32(3): 410-421. |
14 | CLAUDE O, GREGORY T, MONTEMAGNO S, et al. Vascular microanastomosis in rat femoral arteries: experimental study comparing non-absorbable and absorbable sutures[J]. J Reconstruct Microsurgery, 2007, 23(2): 87-91. |
15 | JOSEPH B, GEORGE A, GOPI S, et al. Polymer sutures for simultaneous wound healing and drug delivery-a review[J]. Int J Pharm, 2017, 524(1/2): 454-466. |
16 | KURAHASHI E, SUGIMOTO H, NAKANISHI E, et al. Shape memory properties of polyurethane/poly(oxyethylene) blends[J]. Soft Matter, 2012, 8(2): 496-503. |
17 | VAKIL A U, PETRYK N M, SHEPHERD E, et al. Biostable shape memory polymer foams for smart biomaterial applications[J]. Polymers, 2021, 13(23): 4084. |
18 | CHATTERJEE T, DEY P, NANVO G B, et al. Thermoresponsive shape memory polymer blends based on alpha olefin and ethylene propylene diene rubber[J]. Polymer, 2015, 78: 180-192. |
19 | ZHOU W C, TAN P F, CHEN X H, et al. Berberine-incorporated shape memory fiber applied as a novel surgical suture[J]. Front Pharmacol, 2020, 10: 1506. |
20 | JOO Y S, CHA J R, GONG M S. Biodegradable shape-memory polymers using polycaprolactone and isosorbide based polyurethane blends[J]. Mater Scie Eng C-Mater Biolog Appl, 2018, 91: 426-435. |
21 | DUARAH R, SINGH Y P, GUPTA P, et al. High performance bio-based hyperbranched polyurethane/carbon dot-silver nanocomposite: a rapid self-expandable stent[J]. Biofabrication, 2016, 8(4): 045013. |
22 | DUARAH R, SINGH Y P, GUPTA P, et al. Smart self-tightening surgical suture from a tough bio-based hyperbranched polyurethane/reduced carbon dot nanocomposite[J]. Biomed Mater, 2018, 13(4): 045004. |
23 | NESPOLI A, NINARELLO D, BASSANI E, et al. Proof of concept of a self-tightening needle-less suture using a NiTi shapememory alloy[J]. Bio-Design Manufact, 2023, 6(5): 536-549. |
24 | QI X, XU E, JIA M, et al. Bio-based, self-crosslinkable eucommia ulmoides gum/silica hybrids with body temperature triggering shape memory capability[J]. Macromol Mater Eng, 2021, 306(11):2100370. |
25 | INGLE N P, KING M W. Optimizing the tissue anchoring performance of barbed sutures in skin and tendon tissues[J]. J Biomechanics, 2010, 43(2): 302-309. |
26 | MCKENZIE A R. An experimental multiple barbed suture for the long flexor tendons of the palm and fingers. preliminary report[J]. J Bone Joint Surgery British Vol, 1967, 49(3): 440-447. |
27 | BARRIE K A, TOMAK S L, CHOLEWICKI J, et al. The role of multiple strands and locking sutures on gap formation of flexor tendon repairs during cyclical loading[J]. J Hand Surgery-Am Vol, 2000, 25(4): 714-720. |
28 | INGLE N P, KING M W, ZIKRY M A. Finite element analysis of barbed sutures in skin and tendon tissues[J]. J Biomech, 2010, 43(5): 879-886. |
29 | HUANG Y, CADET E R, KING M W, et al. Comparison of the mechanical properties and anchoring performance of polyvinylidene fluoride and polypropylene barbed sutures for tendon repair[J]. J Biomed Mater Res Part B-Appl Biomater, 2022, 110(10): 2258-2265. |
30 | LAROCHE G, MAROIS Y, SCHWARZ E, et al. Polyvinylidene fluoride monofilament sutures: can they be used safely for long-term anastomoses in the thoracic aorta?[J]. Artific Organs, 1995, 19(11): 1190-1199. |
31 | BARBOLT T A. Chemistry and safety of triclosan, and its use as an antimicrobial coating on coated VICRYL* plus antibacterial suture (coated polyglactin 910 suture with triclosan)[J]. Surg Infect, 2002, 3(Suppl 1): S45-53. |
32 | PAUL M D. Bidirectional barbed sutures for wound closure: evolution and applications[J]. J Am College Certified Wound Specialists, 2009, 1(2): 51-57. |
33 | DENNIS C, SETHU S, NAYAK S, et al. Suture materials-current and emerging trends[J]. J Biomed Mater Res Part A, 2016, 104(6): 1544-1559. |
34 | GALAL I, EL-HINDAWY K. Impact of using triclosan-antibacterial sutures on incidence of surgical site infection[J]. Am J Surgery, 2011, 202(2): 133-138. |
35 | KALITA H, HAZARIKA A, KALITA S, et al. Antimicrobials tethering on suture surface through a hydrogel: a novel strategy to combat postoperative wound infections[J]. RSC Adv, 2017, 7(52): 32637-32646. |
36 | CHEN X, ZHANG Q, HOU D, et al. Fabrication and characterization of novel antibacterial silk sutures with different braiding parameters[J]. J Nat Fibers, 2019, 16(6): 866-876. |
37 | CIRALDO F E, LIVERANI L, GRITSCH L, et al. Synthesis and characterization of silver-doped mesoporous bioactive glass and its applications in conjunction with electrospinning[J]. Materials, 2018, 11(5): 692. |
38 | CIRALDO F E, SCHNEPF K, GOLDMANN W H, et al. Development and characterization of bioactive glass containing composite coatings with ion releasing function for antibiotic-free antibacterial surgical sutures[J]. Materials, 2019, 12(3): 423. |
39 | DHAS S P, ANBARASAN S, MUKHERJEE A, et al. Biobased silver nanocolloid coating on silk fibers for prevention of post-surgical wound infections[J]. Int J Nanomed, 2015, 10(Suppl 1): 159-170. |
40 | ZHOU Y L, YANG Q Q, ZHANG L, et al. Nanoparticle-coated sutures providing sustained growth factor delivery to improve the healing strength of injured tendons[J]. Acta Biomater, 2021, 124: 301-314. |
41 | ALVAREZ-PAINO M, MUNOZ-BONILLA A, FERNANDEZ-GARCIA M. Antimicrobial polymers in the nano-world[J]. Nanomaterials, 2017, 7(2): 48. |
42 | SCHULTZ G S, SIBBALD R G, FALANGA V, et al. Wound bed preparation: a systematic approach to wound management[J]. Wound Repair Regen, 2003, 11 (Suppl 1): S1-S28. |
43 | JOHNSON P C, ROBERTS A D, HIRE J M, et al. The effect of instrumentation on suture tensile strength and knot pullout strength of common suture materials[J]. J Surgic Educ, 2016, 73(1): 162-165. |
44 | YU N, CAI T, SUN Y, et al. A novel antibacterial agent based on AgNPs and Fe3O4 loaded chitin microspheres with peroxidase-like activity for synergistic antibacterial activity and wound-healing[J]. Int J Pharma, 2018, 552(1/2): 277-287. |
45 | ZENG Q, HAN K, ZHENG C, et al. Degradable and self-luminescence porous silicon particles as tissue adhesive for wound closure, monitoring and accelerating wound healing[J]. J Colloid Interface Sci, 2022, 607: 1239-1252. |
46 | SRIDHAR R, LAKSHMINARAYANAN R, MADHAIYAN K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals[J]. Chem Soc Rev, 2015, 44(3): 790-814. |
47 | YANG Y, XIA T, ZHI W, et al. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor[J]. Biomater, 2011, 32(18): 4243-4254. |
48 | TOTTOLI E M, DORATI R, GENTA I, et al. Skin wound healing process and new emerging technologies for skin wound care and regeneration[J]. Pharmaceutics, 2020, 12(8): E735. |
49 | FIERHELLER M, SIBBALD R G. A clinical investigation into the relationship between increased periwound skin temperature and local wound infection in patients with chronic leg ulcers[J]. Adv Skin Wound Care, 2010, 23(8): 369-379. |
50 | NAKAGAMI G, SANADA H, IIZAKA S, et al. Predicting delayed pressure ulcer healing using thermography: a prospective cohort study[J]. J Wound Care, 2010, 19(11): 465-472. |
51 | KIM D H, WANG S, KEUM H, et al. Thin, flexible sensors and actuators as 'instrumented' surgical sutures for targeted wound monitoring and therapy [J]. Small, 2012, 8(21): 3263-3268. |
52 | WIJLENS A M, HOLLOWAY S, BUS S A, et al. An explorative study on the validity of various definitions of a 2.2 ℃ temperature threshold as warning signal for impending diabetic foot ulceration[J]. Int Wound J, 2017, 14(6): 1346-1351. |
53 | HOUSHYAR S, BHATTACHARYYA A, KHALID A, et al. Multifunctional sutures with temperature sensing and infection contro[J]. Macromol Biosci, 2021, 21(3): e2000364. |
54 | GAO B, GUO M, LYU K, et al. Intelligent silk fibroin based microneedle dressing (i-SMD)[J]. Adv Funct Mater, 2021, 31(3): 1-9. |
55 | GUO M, WANG Y, GAO B, et al. Shark tooth-inspired microneedle dressing for intelligent wound management[J]. ACS Nano, 2021, 15(9): 15316-15327. |
56 | LEE Y, KIM H, KIM Y, et al. A multifunctional electronic suture for continuous strain monitoring and on-demand drug release[J]. Nanoscale, 2021, 13(43): 18112-18124. |
57 | LIU M, ZHANG Y, LIU K, et al. Biomimicking antibacterial opto-electro sensing sutures made of regenerated silk proteins[J]. Adv Mater, 2021, 33(1): e2004733. |
58 | PERCIVAL S L, FINNEGAN S, DONELLI G, et al. Antiseptics for treating infected wounds: efficacy on biofilms and effect of pH[J]. Critical Rev Microbiol, 2016, 42(2): 293-309. |
59 | ZHANG Q, ZOU Y, TANG L, et al. Stage-controlled antibacterial surgical sutures based on curcumin@ZIF-8 functional coating for improved wound healing[J]. Prog Org Coat, 2023, 184: 107829. |
60 | MORELLI F, ANDERSON A, MCLISTER A, et al. Electrochemically driven reagent release from an electronic suture[J]. Electrochem Commun, 2017, 81: 70-73. |
61 | HANAFI A, NOGRALES N, ABDULLAH S, et al. Cellulose acetate phthalate microencapsulation and delivery of plasmid DNA to the intestines[J]. J Pharma Sci, 2013, 102(2): 617-626. |
62 | CABOT J M, DAIKUARA L Y, YUE Z, et al. Electrofluidic control of bioactive molecule delivery into soft tissue models based on gelatin methacryloyl hydrogels using threads and surgical sutures[J]. Sci Rep, 2020, 10(1): 1-10. |
[1] | LIU Chunxiu, WANG Ping, ZHAO Jingjing, CHEN Quanpeng, AI Shiyun*. Preparation of Amino-hydrotalcite Like Modified Electrode and Its Electrochemical Disinfection [J]. Chinese Journal of Applied Chemistry, 2011, 28(06): 699-703. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||