Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (1): 1-13.DOI: 10.19894/j.issn.1000-0518.240199
• Review •
Yun-Fan CAI1,2, Ke-Hui XU2, Yao ZHAO2, Zhi-Ting LI1,2, Ling-Yun XIA1, Chen-Yu WANG2, Zhi-Xiao LUO1(), Li-Na NIU2()
Received:
2024-07-01
Accepted:
2024-11-20
Published:
2025-01-01
Online:
2025-01-24
Contact:
Zhi-Xiao LUO,Li-Na NIU
About author:
niulina831013@126.com;Supported by:
CLC Number:
Yun-Fan CAI, Ke-Hui XU, Yao ZHAO, Zhi-Ting LI, Ling-Yun XIA, Chen-Yu WANG, Zhi-Xiao LUO, Li-Na NIU. Substrate Design of Surface-Enhanced Raman Spectroscopy and Research Progress in the Detection of Body Fluids[J]. Chinese Journal of Applied Chemistry, 2025, 42(1): 1-13.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240199
Fig.4 (A) Schematic diagram of three-dimensional Ni-NiO nano-structures synthesized on Ni substrate by femtosecond laser ablation physical synthesis technology; (B) TEM image of a synthesized Ni-NiO nanostructure[58]
Fig.6 (A) Schematic diagram of VP40 antibody encapsulated in gold-silica (SiO2) core-Shell material; (B) Schematic of Ebola, Lassa, and malaria detection using SERS nanotag technology[74]
Fig.7 (A) Schematic diagram of Au NR and Au@4-MBN@Ag NP synthesized and functionalized with DNA probes that are semi-complementary to the miRNA-21 sequence, respectively; (B) Characteristic peaks in the Au@4-MBN@Ag NP reporter Raman signal silencing window (1800~2800 cm-1)[77]
1 | DAMIANI C, GAGLIO D, SACCO E, et al. Systems metabolomics: from metabolomic snapshots to design principles[J]. Curr Opin Biotech, 2020, 63: 190-199. |
2 | DEAN L. Blood groups and red cell antigens[M]. USA, Maryland: NCBI, 2005. |
3 | LAURENCE A M, ROBERT A H, GRAY S, et al. Principles of biochemistry[M]. USA, New York: Pearson, 2014. |
4 | MARSHALL W J, LAPSLEY M, DAY A P, et al. Clinical biochemistry: metabolic and clinical aspects: third edition[M]. NL,Amsterdam:EHS, 2014. |
5 | FREEDMAN D B. Clinical governance: implications for point-of-care testing. annals of clinical biochemistry[J]. Ann Clin Biochem, 2002, 39(5): 421-423. |
6 | 刘宇. 血常规检验在临床贫血患者诊断中的影响分析[J]. 中国现代医生, 2022, 60(11): 144-146. |
LIU Y. Analysis of the effect of blood routine examination in the diagnosis of patients with clinical anemia[J]. Modern Chin Doctor, 2022, 60(11): 144-146. | |
7 | YUAN H, CHIU P Y, CHEN C F. Paper-based analytical devices for point-of-care blood tests[J]. Biomicrofluidics, 2021, 15(4): 041303. |
8 | HIRATA K, WAKE M, TAKAHASHI T, et al. Clinical predictors for delayed or inappropriate initial diagnosis of type A acute aortic dissection in the emergency room[J]. Plos One, 2015, 10(11): e0141929. |
9 | FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chem Phys Lett, 1974, 26(2): 163-166. |
10 | MOSKOVITS M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals[J]. J Chem Phys, 1978, 69(9): 4159-4161. |
11 | SHIPP D W, SINJAB F, NOTINGHER I, et al. Raman spectroscopy: techniques and applications in the life sciences[J]. Adv Opt Photon, 2017, 9: 315-428. |
12 | HAN X X, RODRIGUEZ R S, HAYNES C L, et al. Surface-enhanced Raman spectroscopy[J]. Nat Rev Methods Primers, 2022, 1(1): 87. |
13 | ZHANG Y W, REN L, WANG Q, et al. Raman spectroscopy: a potential diagnostic tool for oral diseases[J]. Front Cell Infect Mi, 2022, 12: 775236. |
14 | ZONG C, XU M X, XU L J, et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges[J]. Chem Rev, 2018, 118(10): 4946-4980. |
15 | 赵堉文, 张泽帅, 朱晓英, 等. 表面增强拉曼光谱技术在多元病原菌同时检测中的应用策略[J]. 光谱学与光谱分析, 2023, 43(7): 2012-2018. |
ZHAO Y W, ZHANG Z S, ZHU X Y, et al. Application strategies of surface-enhanced Raman spectroscopy in simultaneous detection of multiple pathogens[J]. Spectrosc Spect Anal, 2023, 43(7): 2012-2018. | |
16 | DECKERT V, GEORGE M W, UMAPATHY S. Raman spectroscopy at the beginning of the twenty-first century Ⅱ[J]. J Raman Spectrosc, 2008, 39(11): 1508-1511. |
17 | 刘平, 齐晓彬, 刘毅恒, 等. 拉曼光谱技术在深空探测中的应用评述 [J]. 科学通报, 2023, 68(27): 3634-3653. |
LIU P, QI X L, LIU Y H, et al. Applications of Raman spectroscopy technology in deep space exploration: a review[J]. Chin Sci Bull, 2023, 68(27): 3634-3653. | |
18 | LU J T, XUE Q S, BAI H X, et al. Design of a confocal micro-Raman spectroscopy system and research on microplastics detection[J]. Appl Opt, 2021, 60(27): 8375-8383. |
19 | LU Y, LIN L, YE J. Human metabolite detection by surface-enhanced Raman spectroscopy[J]. Mater Today Bio, 2022, 13: 100205. |
20 | SUN D, CAO F, TIAN Y, et al. Label-free detection of multiplexed metabolites at single-cell level via a SERS-microfluidic droplet platform[J]. Anal Chem, 2019, 91(24): 15484-15490. |
21 | BARSHUTINA M, DOROSHINA N, BAIZHUMANOV A, et al. SERS substrates based on rose petal replicas for the oxidative stress detection[J]. Appl Surf Sci, 2023, 626: 157281. |
22 | SU H S, CHANG X X, XU B J. Surface-enhanced vibrational spectroscopies in electrocatalysis: fundamentals, challenges, and perspectives[J]. Chin J Catal, 2022, 43(11): 2757-2771. |
23 | CHANG K, ZHAO Y J, WANG M L, et al. Advances in metal-organic framework-plasmonic metal composites based SERS platforms: engineering strategies in chemical sensing, practical applications and future perspectives in food safety[J]. Chem Eng J, 2023, 459: 141539. |
24 | FAN M, ANDRADE G F, BROLO A G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry[J]. Anal Chim Acta, 2011, 693(1/2): 7-25. |
25 | PITARKE J M, SILKIN V M, CHULKOV E V, et al. Theory of surface plasmons and surface-plasmon polaritons[J]. Prog Phys, 2007, 70(1): 1-87. |
26 | BROWN R J C, WANG J, MILTON M J T. Electromagnetic modelling of Raman enhancement from nanoscale structures as a means to predict the efficacy of SERS substrates[J]. J Nanomater, 2007, 14: 1-10. |
27 | POCKRAND I, OTTO A. Coverage dependence of Raman scattering from pyridine adsorbed to silver/vacuum interfaces[J]. Solid State Commun, 1980, 35(11): 861-865. |
28 | LEE H K, LEE Y H, KOH C S L, et al. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials[J]. Chem Soc Rev, 2019, 48(3): 731-756. |
29 | CAMDEN J P, DIERINGER J A, WANG Y, et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots[J]. J Am Chem Soc, 2008, 130(38): 12616-12617. |
30 | WU D Y, LIU X M, DUAN S, et al. Chemical enhancement effects in SERS spectra: a quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals[J]. Phys Chem C, 2008, 112(11): 4195-4204. |
31 | LIU Y P, LU Z W, ZHU H B, et al. Characterization of a chloride-activated surface complex and corresponding enhancement mechanism by SERS saturation effect[J]. Phys Chem C, 2007, 121(1): 950-957. |
32 | 陈韶云, 张行颖, 刘奔, 等. 表面增强拉曼光谱基底的种类及其应用进展[J]. 分析化学, 2024, 52(7): 910-924. |
CHEN S Y, ZHANG X Y, LIU B, et al. Classification and application of surface-enhanced Raman spectroscopy substrates[J]. Chin J Anal Chem, 2024, 52(7): 910-924. | |
33 | ADRIAN F J. Charge transfer effects in surface-enhanced Raman scatteringa[J]. JCP, 1982, 77(11): 5302-5314. |
34 | 王姝凡, 张雁玲, 王少军, 等. 表面增强拉曼光谱基底研究进展[J]. 当代化工, 2022(1): 051. |
WANG S F, ZHANG Y L, WANG S J, et al. Research progress in substrates of surface-enhanced Raman spectroscopy[J]. Contemp Chem Ind, 2022(1): 051. | |
35 | DELL'OLIO F, SU J, HUSER T, et al. Photonic technologies for liquid biopsies: recent advances and open research challenges[J]. Laser Photon Rev, 2021, 15(1): 1863-8880 |
36 | XIE W, SCHLÜCKER S. Medical applications of surface-enhanced Raman scattering[J]. PCCP, 2013, 15(15): 5329-5344. |
37 | 王佳琪, 徐蔚青, 徐抒平. 表面增强拉曼光谱技术结合机器学习方法在生物医学领域应用的最新进展[J]. 光散射学报, 2024, 36(1): 1-15. |
WANG J Q, XU W Q, XU S P. Recent advances in surface-enhanced Raman spectroscopy(SERS) combined with machine learning algorithms in biomedical fields[J]. J Light Scatter, 2024, 36(1): 1-15. | |
38 | HU Q, ZHAO G C, GUO H M, et al. Preparation and SERS performance of gold nanoparticles-decorated patterned silicon substrate[J]. Appl Surf Sci, 2023, 638: 157966. |
39 | FRASER J P, POSTNIKOV P, MILIUTINA E, et al. Application of a 2D molybdenum telluride in SERS detection of biorelevant molecules[J]. ACS Appl Mater, 2020, 12(42): 47774-47783. |
40 | CAO Y, LIANG P, DONG Q, et al. Facile reduction method synthesis of defective MoO2-x nanospheres used for SERS detection with high chemical enhancement[J]. Anal Chem, 2019, 91(13): 8683-8690. |
41 | HOSSAIN M I, NANDA S S, CHO S, et al. Gold nanorod density-dependent label-free bacteria sensing on a flake-like 3D graphene-based device by SERS[J]. Biosensors, 2023, 13(11): 962. |
42 | LANE L A, QIAN X M, NIE S M. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging[J]. Chem Rev, 2015, 115(19): 10489-10529. |
43 | ZHENG X S, JAHN I J, WEBER K, et al. Label-free SERS in biological and biomedical applications: recent progress, current challenges and opportunities[J]. Spectrochim Acta A, 2018, 197: 56-77. |
44 | WANG Y Q, YAN B, CHEN L X. SERS tags: novel optical nanoprobes for bioanalysis[J]. Chem Rev, 2013, 113(3): 1391-1428. |
45 | TONG L M, XU H X, KÄLL M. Nanogaps for SERS applications[J]. Mrs Bull, 2014, 39(2): 163-168. |
46 | MULVIHILL M J, LING X Y, HENZIE J, et al. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS[J]. J Am Chem Soc, 2010, 132(1): 268-274. |
47 | 杨序纲, 吴琪琳. 拉曼光谱的分析与应用[M]. 北京: 国防工业出版社, 2008. |
YANG X G, WU Q L. Raman spectroscopy analysis and application[M]. Being: National Defense Industry Press, 2008. | |
48 | STILES P L, DIERINGER J A, SHAH N C, et al. Surface-enhanced Raman spectroscopy[J]. Annu Rev Anal Chem, 2008, 1: 601-626. |
49 | ZHANG T, LI Y T, LV X M, et al. Ultra-sensitive and unlabeled SERS nanosheets for specific identification of glucose in body fluids[J]. Adv Funct, 2024, 34(17): 2315668. |
50 | SHIN H, OH S, HONG S, et al. Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes[J]. ACS Nano, 2020, 14(5): 5435-5444. |
51 | XIE Y C Z, SU X M, WEN Y, et al. Artificial intelligent label-free SERS profiling of serum exosomes for breast cancer diagnosis and postoperative assessment[J]. Nano Lett, 2022, 22(19): 7910-7918. |
52 | WANG X J, ZHU X P, CHEN Y Q, et al. Sensitive surface-enhanced raman scattering detection using on-demand postassembled particle-on-film structure[J]. ACS Appl Mater, 2017, 9(36): 31102-31110. |
53 | FU G, SUN D W, PU H, et al. Fabrication of gold nanorods for SERS detection of thiabendazole in apple[J]. Talanta, 2019, 195: 841-849. |
54 | PATEL A S, JUNEJA S, KANAUJIA P K, et al. Gold nanoflowers as efficient hosts for SERS based sensing and bio-imaging[J]. Nano-Struct Nano-Objects, 2018, 16: 329-336. |
55 | DENG X G, BRAUN G B, LIU S, et al. Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy[J]. Nano Lett, 2010, 10(5): 1780-1786. |
56 | HUANG L P, ZHU Y J, XU C S, et al. Noninvasive diagnosis of gastric cancer based on breath analysis with a tubular surface-enhanced Raman scattering sensor[J]. ACS Sens, 2022, 7(5): 1439-1450. |
57 | CHOWDHURY A, TAN B, VENKATAKRISHNAN K. SERS-active 3D interconnected nanocarbon web toward nonplasmonic in vitro sensing of HeLa cells and fibroblasts[J]. ACS Appl Mater, 2018, 10(42): 35715-35733. |
58 | PREMACHANDRAN S, HALDAVNEKAR R, DAS S, et al. DEEP surveillance of brain cancer using self- functionalized 3D nanoprobes for noninvasive liquid biopsy[J]. ACS Nano, 2022, 16(11): 17948-17964. |
59 | 雍佳乐, 吴东. 飞秒激光仿生调控材料表面浸润性: 当前进展与挑战(特邀)[J]. 中国激光, 2024, 51(1): 169-249. |
YONG J L, WU D. Bioinspired controlling the surface wettability of materials by femtosecond laser: current progress and challenges (invited)[J]. Chin J Lasers, 2024, 51(1): 169-249. | |
60 | ALESSANDRI I, LOMBARDI J R. Enhanced Raman scattering with dielectrics[J]. Chem Rev, 2016, 116(24): 14921-14981. |
61 | KESHAVARZ M, TAN B, VENKATAKRISHNAN K. Cell selective apoptosis induced by polymorphic alteration of self-assembled silica nanowebs[J]. ACS Appl Mater Inter, 2017, 9(7): 6292-6305. |
62 | KESHAVARZ M, TAN B, VENKATAKRISHNAN K. Label-free SERS quantum semiconductor probe for molecular-level and in vitro cellular detection: a noble-metal-free methodology[J]. ACS Appl Mater Inter, 2018, 10(41): 34886-34904. |
63 | GOLUBEWA L, KARPICZ R, MATULAITIENE I, et al. Surface-enhanced Raman spectroscopy of organic molecules and living cells with gold-plated black silicon[J]. ACS Appl Mater Inter, 2020, 12(45): 50971-50984. |
64 | HU Q, ZHAO G C, GUO H M, et al. Preparation and SERS performance of gold nanoparticles-decorated patterned silicon substrate[J]. Appl Surf Sci, 2023, 638: 157966. |
65 | LIU X H, JIANG S, CHANG L, et al. Recent research progress of non-noble metal based surface-enhanced Raman scattering substrates[J]. Acta Phys Sin, 2020, 69(19): 190701. |
66 | LI S K, LI Z Y, HAO Q, et al. Ultrastable graphene isolated AuAg nanoalloy for SERS biosensing and photothermal therapy of bacterial infection[J]. Chin Chem Lett, 2023, 35(3): 108636. |
67 | XU S C, MAN B Y, JIANG S Z, et al. Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition As surface-enhanced Raman scattering substrate for label-free detection of adenosine[J]. ACS Appl Mater, 2015, 7(20): 10977-10987. |
68 | ZHOU H Q, QIU C Y, LIU Z, et al. Thickness-dependent morphologies of gold on n-layer graphenes[J]. J Am Chem Soc, 2010, 132(3): 944-946. |
69 | ZHOU H Q, QIU C, YU F, et al. Thickness-dependent morphologies and surface-enhanced Raman scattering of Ag deposited on n-layer graphenes[J]. J Phys Chem C, 2011, 115: 11348-11354. |
70 | NALINI S, THOMAS S, ANJU K S, et al. Chemical vapour deposited graphene-mediated enhanced SERS performance in silver nanostructures[J]. Mater Sci Technol, 2022, 39(8): 933-940. |
71 | XU W, PAIDI S K, QIN Z, et al. Self-folding hybrid graphene skin for 3D biosensing[J]. Nano Lett, 2019, 19(3): 1409-1417. |
72 | DONG S L, WANG Y H, LIU Z Q, et al. Beehive-inspired macroporous SERS probe for cancer detection through capturing and analyzing exosomes in plasma[J]. ACS Appl Mater, 2020, 12(4): 5136-5146. |
73 | PAZOS-PEREZ N, PAZOS E, CATALA C, et al. Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids[J]. Sci Rep, 2016, 6: 29014. |
74 | SEBBA D, LASTOVICH A G, KURODA M, et al. A point-of-care diagnostic for differentiating Ebola from endemic febrile diseases[J]. STM, 2018, 10(471): eaat0944. |
75 | MUHAMMAD P, HANIF S, YAN J L, et al. SERS-based nanostrategy for rapid anemia diagnosis[J]. Nanoscale, 2020, 12(3): 1948-1957. |
76 | GAO D H, YANG X H, TENG P P, et al. On-line SERS detection of bilirubin based on the optofluidic in-fiber integrated GO/Ag NPs for rapid diagnosis of jaundice[J]. Talanta, 2021, 234: 122692. |
77 | CHEN C R, WANG J, LU D C, et al. Early detection of lung cancer via biointerference-free, target microRNA-triggered core-satellite nanocomposites[J]. Nanoscale, 2022, 14(22): 8103-8111. |
78 | ZHAO J Q, WANG J H, LIU Y W, et al. Detection of prostate cancer biomarkers via a SERS-based aptasensor[J]. Biosens Bioelectron, 2022, 216: 114660. |
[1] | Jia-Huan PEI, Xiao-Hua QI, Ming-Qiang ZOU, Yong JIN, De-Ying WANG, Yun-Jing LUO. Advances in Surface-Enhanced Raman Spectroscopy for the Detection of Veterinary Drug Residues in Foods of Animal Origin [J]. Chinese Journal of Applied Chemistry, 2024, 41(4): 459-471. |
[2] | ZHANG Meng, CHEN Dong-Zhen, REN Yan-Wei, NING Pan. Sensing Interface Based on Nanoislandlike Sliver Film@Gold Nanotip for Surface Enhanced Raman Scattering Analysis of Dopamine [J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 866-873. |
[3] | ZHU Yuezhou,ZHANG Yuejiao,LI Jianfeng,REN Bin,TIAN Zhongqun. Surface-Enhanced Raman Spectroscopy: Applications and Perspectives [J]. Chinese Journal of Applied Chemistry, 2018, 35(9): 984-992. |
[4] | YAN Zhaodong,LI Yang,ZHANG Tao,LIU Zhicheng,LIU Yaqing. Gold Nanorod-loaded Electrospun Fibers:Preparation and Surface-enhanced Raman Spectroscopy Performance [J]. Chinese Journal of Applied Chemistry, 2017, 34(5): 519-526. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||