Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (11): 1596-1604.DOI: 10.19894/j.issn.1000-0518.240122
• Full Papers • Previous Articles Next Articles
Li-Xin LIU1,2, Shu-Hua YAO1(), Xuan CAO1, Guan-Nan ZHOU2, Rui WANG2, Lu LI2()
Received:
2024-04-12
Accepted:
2024-08-30
Published:
2024-11-01
Online:
2024-12-04
Contact:
Shu-Hua YAO,Lu LI
About author:
lilu528@dicp.ac.cnSupported by:
CLC Number:
Li-Xin LIU, Shu-Hua YAO, Xuan CAO, Guan-Nan ZHOU, Rui WANG, Lu LI. Synthesis and Alcoholysis of Bio-Based Poly(ethylene 2,5-furandicarboxylate) Catalyzed by Ti-MOF[J]. Chinese Journal of Applied Chemistry, 2024, 41(11): 1596-1604.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240122
Fig.3 (A) NH3-TPD analysis of MIL-125; (B) The N2 adsorption/desorption isotherms analysis for MIL-125; (C) XPS analysis for MIL-125; (D) EPR analysis for MIL-125
No. | Compound | Td-5%/℃ | Tg/℃ | φ(DEGF)/% | Mn | Mw | PDI |
---|---|---|---|---|---|---|---|
1 | PEF/MIL-125-230 | 375.7 | 87.6 | 3.0 | 3.8×104 | 7.2×104 | 1.9 |
2 | PEF/MIL-125-235 | 373.8 | 85.6 | 3.3 | 3.7×104 | 7.4×104 | 2.0 |
3 | PEF/MIL-125-240 | 371.0 | 86.4 | 5.0 | 3.2×104 | 6.6×104 | 2.0 |
4 | PEF/MIL-125-0.01% | 375.7 | 87.6 | 3.0 | 3.8×104 | 7.2×104 | 1.9 |
5 | PEF/MIL-125-0.05% | 373.1 | 85.6 | 4.1 | 3.2×104 | 5.7×104 | 1.7 |
6 | PEF/MIL-125-0.1% | 370.0 | 87.3 | 4.7 | 3.0×104 | 5.6×104 | 1.8 |
7 | PEF/TBT | 361.5 | 86.4 | 5.1 | 2.6×104 | 6.3×104 | 2.4 |
Table 1 Comparison of catalytic performances of MIL-125 with TBT catalysts in PEF synthesis
No. | Compound | Td-5%/℃ | Tg/℃ | φ(DEGF)/% | Mn | Mw | PDI |
---|---|---|---|---|---|---|---|
1 | PEF/MIL-125-230 | 375.7 | 87.6 | 3.0 | 3.8×104 | 7.2×104 | 1.9 |
2 | PEF/MIL-125-235 | 373.8 | 85.6 | 3.3 | 3.7×104 | 7.4×104 | 2.0 |
3 | PEF/MIL-125-240 | 371.0 | 86.4 | 5.0 | 3.2×104 | 6.6×104 | 2.0 |
4 | PEF/MIL-125-0.01% | 375.7 | 87.6 | 3.0 | 3.8×104 | 7.2×104 | 1.9 |
5 | PEF/MIL-125-0.05% | 373.1 | 85.6 | 4.1 | 3.2×104 | 5.7×104 | 1.7 |
6 | PEF/MIL-125-0.1% | 370.0 | 87.3 | 4.7 | 3.0×104 | 5.6×104 | 1.8 |
7 | PEF/TBT | 361.5 | 86.4 | 5.1 | 2.6×104 | 6.3×104 | 2.4 |
Fig.4 (A) TGA graph of the effect of polycondensation temperature on the thermal decomposition temperature of PEF; (B) TGA graph of the effect of catalyst dosage on the thermal decomposition temperature of PEF; (C) DSC secondary heating curve of the effect of polycondensation temperature on the thermal performance of PEF; (D) DSC secondary heating curve of the effect of catalyst dosage on the thermal performance of PEF
Fig.7 (A) Catalytic ethylene glycol alcoholysis test of PEF/MIL-125-0.01%, 1H NMR; (B) 13C NMR; (C) MS of the intermediate BHEFDC; (D) Intuitive product diagram
1 | FEI X, WANG J, ZHU J, et al. Biobased poly(ethylene 2,5-furancoate): no longer an alternative, but an irreplaceable polyester in the polymer industry[J]. ACS Sustainable Chem Eng, 2020, 8(23): 8471-8485. |
2 | CUI Y, DENG C, FAN L, et al. Progress in the biosynthesis of bio-based PET and PEF polyester monomers[J]. Green Chem, 2023, 25(15): 5836-5857. |
3 | MIAH M R, DONG Y, WANG J, et al. Recent progress on sustainable 2,5-furandicarboxylate-based polyesters: properties and applications[J]. ACS Sustainable Chem Eng, 2024, 12(8): 2927-2961. |
4 | BANELLA M B, BONUCCI J, VANNINI M, et al. Insights into the synthesis of poly(ethylene 2,5-furandicarboxylate) from 2,5-furandicarboxylic acid: steps toward environmental and food safety excellence in packaging applications[J]. Ind Eng Chem Rsc, 2019, 58(21): 8955-8962. |
5 | QU X, ZHOU G, WANG R, et al. Synergistic catalysis of imidazole acetate ionic liquids for the methanolysis of spiral poly(ethylene 2,5-furandicarboxylate) under a mild condition[J]. Green Chem, 2021, 23(4): 1871-1882. |
6 | FINELLI L, LORENZETTI C, MESSORI M, et al. Comparison between titanium tetrabutoxide and a new commercial titanium dioxide based catalyst used for the synthesis of poly(ethylene terephthalate)[J]. J Appl Polym Sci, 2004, 92(3): 1887-1892. |
7 | GRUTER G J, SIPOS L, ADRIANUS DAM M. Accelerating research into bio-based FDCA-polyesters by using small scale parallel film reactors[J]. Comb Chem High Throughput Screen, 2012, 15(2): 180-188. |
8 | TERZOPOULOU Z, KARAKATSIANOPOULOU E, KASMI N, et al. Effect of catalyst type on molecular weight increase and coloration of poly(ethylene furanoate) biobased polyester during melt polycondensation[J]. Polym Chem, 2017, 8(44): 6895-6908. |
9 | SUN Y, JI H, SUN Y, et al. Synergistic effect of oxygen vacancy and high porosity of nano MIL-125(Ti) for enhanced photocatalytic nitrogen fixation[J]. Angew Chem Int Ed, 2024, 63(3): e202316973. |
10 | SAFARIFARD V, RODRÍGUEZ-HERMIDA S, GUILLERM V, et al. Influence of the amide groups in the CO2/N2 selectivity of a series of isoreticular, interpenetrated metal-organic frameworks[J]. Crystal Grow Design, 2016, 16(10): 6016-6023. |
11 | RAVON U, DOMINE M E, GAUDILLÈRE C, et al. MOFs as acid catalysts with shape selectivity properties[J]. New J Chem, 2008, 32(6): 937-940. |
12 | CAI G, JIANG H L. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability[J]. Angew Chem Int Ed Engl, 2017, 56(2): 563-571. |
13 | WENG Y, HONG C B, ZHANG Y, et al. Catalytic depolymerization of polyester plastics toward closed-loop recycling and upcycling[J]. Green Chem, 2024, 26(2): 571-592. |
14 | LOOS K, ZHANG R, PEREIRA I, et al. A perspective on PEF synthesis, properties, and end-life[J]. Front Chem, 2020, 8: 585. |
15 | CAO F, WANG L, ZHENG R, et al. Research and progress of chemical depolymerization of waste PET and high-value application of its depolymerization products [J]. RSC Adv, 2022, 12(49): 31564-31576. |
16 | DAN-HARDI M, SERRE C, FROT T, et al. A new photoactive crystalline highly porous titanium(Ⅳ) dicarboxylate[J]. J Am Chem Soc, 2009, 131(31): 10857-10859. |
17 | AGOSTINHO B, SILVESTRE A J D, SOUSA A F. From PEF to rPEF: disclosing the potential of deep eutectic solvents in continuous de-/re-polymerization recycling of biobased polyesters[J]. Green Chem, 2022, 24(8): 3115-3119. |
18 | FATIMA R, PARK S, KIM J O. Effect of molar ration of Ti/Ligand on the synthesis of MIL-125(Ti) and its adsorption and photocatalytic properties[J]. J Ind Eng Chem, 2020, 90: 166-177. |
19 | ABDUR R M, MOUSAVI B, SHAHADAT H M, et al. Ring-opening copolymerization of ε-caprolactone and δ-valerolactone by a titanium-based metal-organic framework[J]. New J Chem, 2021, 45(25): 11313-11316. |
20 | QU X L, JIANG M, WANG B, et al. A bronsted acidic ionic liquid as an efficient and selective catalyst system for bioderived high molecular weight poly(ethylene 2,5-furandicarboxylate)[J]. ChemSusChem, 2019, 12(22): 4927-4935. |
21 | QU X, ZHOU G, WANG R, et al. Insights into high molecular weight poly(ethylene 2,5-furandicarboxylate) with satisfactory appearance: roles of in-situ catalysis of metal zinc[J]. J Ind Eng Chem, 2021, 99: 422-430. |
22 | 李钰炫, 赵昱昊, 代雨泽, 等. 聚2,5-呋喃二甲酸乙二醇酯/纳米二氧化钛/硅藻土复合材料的制备和表征[J]. 应用化学, 2023, 40(9): 1277-1287. |
LI Y X, ZHAO Y H, DAI Y Z, et al. Preparation and characterization of poly(ethylene 2,5-furandicarboxylate)/TiO2 nanoparticles/diatomaceous earth composites[J]. Chin J Appl Chem, 2023, 40(9): 1277-1287. | |
23 | 孙雪娇, 王思琦, 董佳, 等. Ag/NH2-MIL-125(Ti)的构建及可见光还原水中Cr(Ⅵ)[J]. 应用化学, 2019, 36(3): 314-323. |
SUN X J, WANG S Q, DONG J, et al. Construction of Ag/NH2-MIL-125(Ti) catalyst for photo-driven reduction of aqueous Cr(Ⅵ) pollutant[J]. Chin J Appl Chem, 2019, 36(3): 314-323. |
[1] | Yu-Xuan LI, Yu-Hao ZHAO, Yu-Ze DAI, Min JIANG, Ying ZHANG, Guang-Yuan ZHOU. Preparation and Characterization of Poly(ethylene 2,5-furandicarboxylate)/TiO2 Nanoparticles/ Diatomaceous Earth Composites [J]. Chinese Journal of Applied Chemistry, 2023, 40(9): 1277-1287. |
[2] | Zhen-Chun TANG, Xin-Quan ZHOU, Pei-Pei WANG, Juan MIAO, Ning ZHANG, Rui-Chang ZHANG, Xue-Feng WEI. Research Progress of Activated Persulfate by MOFs-Based Catalyst in Wastewater Treatment [J]. Chinese Journal of Applied Chemistry, 2023, 40(7): 938-950. |
[3] | Xue-Bo LEI, Hui-Jing LIU, He-Yu DING, Guo-Dong SHEN, Run-Jun SUN. Research Progress on Photocatalysts for Degradation of Organic Pollutants in Printing and Dyeing Wastewater [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 681-696. |
[4] | Ke-Xin YANG, Jie ZHOU, Yu-Shan HOU, Yao-Wei ZHANG, Chen YIN, Dong-Hui XU, Guang-Yang LIU. Research Progress on Preparation and Adsorption of Water Pollutants of Bimetallic Metal-Organic Framework [J]. Chinese Journal of Applied Chemistry, 2023, 40(12): 1630-1642. |
[5] | Lei HUANG, Qian-Wen YANG, Jing-Ling ZHANG, Fei XU, Tai YE, Xing-Fa REN, Xiu-Xiu WU. Research Progress of Computation and Simulation Application in the Study of Adsorption Mechanism and Design of Metal-Organic Frameworks Materials [J]. Chinese Journal of Applied Chemistry, 2023, 40(12): 1643-1661. |
[6] | ZHANG Ming-Shan, LI Teng-Ya, LEI Yu, WU Yan, HE Shu-Hai. Determination of Two Sulfonamides in Environmental Water Based on Dispersivesolid-Phase Extraction with MIL-101(Cr) Metal-Organic Framework [J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 236-244. |
[7] | WU Qiu-Ping, CAI Kun-Ting, WANG Yuan-Kang, SUN Kai, YANG Jin-Bo, HAN Song-Bai, LIU Yun-Tao. Microwave Absorption Properties of Co/C and Microwave-Heat Conversion Properties of Co/C-Polyurethane Phase Change Composites [J]. Chinese Journal of Applied Chemistry, 2021, 38(12): 0-0. |
[8] | WU Qiu-Ping, CAI Kun-Ting, WANG Yuan-Kang, SUN Kai, YANG Jin-Bo, HAN Song-Bai, LIU Yun-Tao. Microwave Absorption Properties of Co/C and Microwave-Heat Conversion Properties of Co/C-Polyurethane Phase Change Composites [J]. Chinese Journal of Applied Chemistry, 2021, 38(12): 1588-1598. |
[9] | XIAO Fan,CUI Yuanjing,QIAN Guodong. Metal-Organic Frameworks for Fluorescence Detection Applications [J]. Chinese Journal of Applied Chemistry, 2018, 35(9): 1113-1125. |
[10] | YUAN Ting,MENG Ting,LI Shuhua,FAN Louzhen. Recent Development of Electroluminescent Diodes Based on Phosphorescent Materials [J]. Chinese Journal of Applied Chemistry, 2018, 35(8): 871-880. |
[11] | YUAN Ning,DU Bingjie,JIA Xiaoxia,YANG Jiangfeng,LI Jinping. Research Progress in Preparation Technology and Application of Bimetal Metal-Organic Frameworks Materials [J]. Chinese Journal of Applied Chemistry, 2018, 35(5): 500-510. |
[12] | LIU Kang,MA Dingxuan,SHI Zhan. Application of Metal-Organic Frameworks for Separation of Hydrocarbon Mixtures [J]. Chinese Journal of Applied Chemistry, 2017, 34(9): 1006-1016. |
[13] | WANG Yutong, FAN Weidong, XIAO Zhenyu, HUANG Zhaodi, XU Lin, ZHANG Liangliang, XING Lixue, DAI Fangna, SUN Daofeng. Solvent-Dependent Synthesis and Fluorescent Properties of Cu(Ⅱ) Metal-Organic Frameworks [J]. Chinese Journal of Applied Chemistry, 2017, 34(9): 1035-1045. |
[14] | XU Kerui, ZHONG Zhiming, XU Huidong, WANG Xuan, ZHAO Min, WU Chuande. Highly Efficient Aerobic Oxidation of Arylalkanes with a Biomimetic Catalyst Platform [J]. Chinese Journal of Applied Chemistry, 2017, 34(9): 1079-1085. |
[15] | Xueyan ZHAO,Shouxin BAO,Xuechao CAI,Xiaoqiu ZHENG,Ruixue ZHAO,Yunhui LI,Maolin PANG. Size and Shape Controlled Growth of Micron or Nano Sized Metal Organic Frameworks [J]. Chinese Journal of Applied Chemistry, 2017, 34(9): 979-995. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||