Chinese Journal of Applied Chemistry ›› 2021, Vol. 38 ›› Issue (4): 376-389.DOI: 10.19894/j.issn.1000-0518.200288
• Review • Previous Articles Next Articles
YOU Wei1, ZHAO Ya-Bin1,2*, SUN Jing3, LI Wen-Jie1, WANG Li-Xue1
Online:
2021-06-01
Supported by:
CLC Number:
YOU Wei, ZHAO Ya-Bin, SUN Jing, LI Wen-Jie, WANG Li-Xue. Recent Progress in Donor Profiling Through Fingermark Residue Analysis[J]. Chinese Journal of Applied Chemistry, 2021, 38(4): 376-389.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.200288
[1] CHAMPOD C, LENNARD C, MARGOT P, et al. Fingerprints and other ridge wkin impressions.pdf[M]. CRC Press, 2016. [2] NAZZARO-PORRO M, PASSI S, BONIFORTI L, et al. Effects of aging on fatty acids in skin surface lipids[J]. J Invest Dermatol, 1979, 73(1): 112-117. [3] DORAKUMBURA B N, BUSETTI F, LEWIS S W. Analysis of squalene and its transformation by-products in latent fingermarks by ultrahigh-performance liquid chromatography-high resolution accurate mass OrbitrapTM mass spectrometry[J]. Forensic Chem, 2019, 17(1): 1-31. [4] PLEIK S, SPENGLER B, SCHÄFER T, et al. Fatty acid structure and degradation analysis in fingerprint residues[J]. J Am Soc Mass Spectrom, 2016, 27(9): 1565-1574. [5] HEMMILA A, MCGILL J, RITTER D. Fourier transform infrared reflectance spectra of latent fingerprints: a biometric gauge for the age of an individual[J]. J Forensic Sci, 2008, 53(2): 369-376. [6] ANTOINE K M, MILLER L M. Chemical differences are observed in children's versus adults' latent fingerprints as a function of time[J]. J Forensic Sci, 2010, 55(2): 513-518. [7] EMERSON B, GIDDEN J, LAY J O, et al. Laser desorption/ionization time-of-flight mass spectrometry of triacylglycerols and other components in fingermark samples*: mass spectrometry of triacylglycerols in fingermark samples[J]. J Forensic Sci, 2011, 56(2): 381-389. [8] ZHOU Z, ZARE R N. Personal information from latent fingerprints using desorption electrospray ionization mass spectrometry and machine learning[J]. Anal Chem, 2017, 89(2): 1369-1372. [9] O'NEILL K C. Potential of triacylglycerol profiles in latent fingerprints to reveal individual diet, exercise, or health information for forensic evidence[J]. Anal Methods, 2020(12): 1-7. [10] GIROD A, WEYERMANN C. Lipid composition of fingermark residue and donor classification using GC/MS[J]. Forensic Sci Int, 2014, 238(14): 68-82. [11] ASANO K G, BAYNE C K, HORSMAN K M, et al. Chemical composition of fingerprints for gender determination[J]. J Forensic Sci, 2002, 47(4): 805-807. [12] DE PUIT M, ISMAIL M, XU X. LCMS Analysis of Fingerprints, the amino acid profile of 20 donors[J]. J Forensic Sci, 2014, 59(2): 364-370. [13] HELMOND W, VAN HERWIJNEN A, VAN RIEMSDIJK J, et al. Chemical profiling of fingerprints using mass spectrometry[J]. Forensic Chem, 2019, 16(100183): 1-11. [14] MEKKAOUI ALAOUI I, HALAMEK J. Fluorescence of 1,2-indanedione with amino acids present in the fingerprint residue: application in gender determination[J]. J Forensic Sci, 2019, 64(5): 1495-1499. [15] CROXTON R S, BARON M G, BUTLER D, et al. Variation in amino acid and lipid composition of latent fingerprints[J]. Forensic Sci Int, 2010, 199(1/2/3): 93-102. [16] BRUNELLE E, HUYNH C, LE A M, et al. New horizons for ninhydrin: colorimetric determination of gender from fingerprints[J]. Anal Chem, 2016, 88(4): 2413-2420. [17] BRUNELLE E, LE A M, HUYNH C, et al. Coomassie brilliant blue g-250 dye: an application for forensic fingerprint analysis[J]. Anal Chem, 2017, 89(7): 4314-4319. [18] BRUNELLE E, HUYNH C, ALIN E, et al. Fingerprint analysis: moving toward multiattribute determination via individual markers[J]. Anal Chem, 2018, 90(1): 980-987. [19] 马捷, 李峰, 郭思媛, 等.谷氨酸递质调节机制与神经系统疾病[J]. 现代生物医学进展, 2012, 12(27):5390-5393. MA J, LI F, GUO S Y, et al. The relationship of the glutamate neurotransmitter regulating mechanisms and nervous system diseases[J]. Prog Mod Biomed, 2012, 12(27): 5390-5393. [20] VAN HELMOND W, O‘BRIEN V, DE JONG R, et al. Collection of amino acids and DNA from fingerprints using hydrogels[J]. Analyst, 2018, 143(1): 900-905. [21] DUTKIEWICZ E P, CHIU H Y, URBAN P L. Probing skin for metabolites and topical drugs with hydrogel micropatches[J]. Anal Chem, 2017, 89(5): 2664-2670. [22] SPINDLER X, HOFSTETTER O, MCDONAGH A M, et al. Enhancement of latent fingermarks on non-porous surfaces using anti-L-amino acid antibodies conjugated to gold nanoparticles[J]. Chem Commun, 2011, 47(19): 5602-5604. [23] DRAPEL V, BECUE A, CHAMPOD C, et al. Identification of promising antigenic components in latent fingermark residues[J]. Forensic Sci Int, 2009, 184(1/2/3): 47-53. [24] SONG W, MAO Z, LIU X, et al. Detection of protein deposition within latent fingerprints by surface-enhanced Raman spectroscopy imaging[J]. Nanoscale, 2012: 4(7):2333-2338. [25] TEMPLETON J E L, LINACRE A. DNA profiles from fingermarks[J]. Biotechniques, 2014, 57(5): 259-266. [26] FIELDHOUSE S, ORAVCOVA E, WALTON-WILLIAMS L. The effect of DNA recovery on the subsequent quality of latent fingermarks[J]. Forensic Sci Int, 2016, 267(6): 78-88. [27] AL OLEIWI A, HUSSAIN I, MCWHORTER A, et al. DNA recovery from latent fingermarks treated with an infrared fluorescent fingerprint powder[J]. Forensic Sci Int, 2017, 277: e39-e43. [28] BORJA T, KARIM N, GOECKER Z, et al. Proteomic genotyping of fingermark donors with genetically variant peptides[J]. Forensic Sci Int Genet, 2019, 42(1): 21-30. [29] FERGUSON L S, WULFERT F, WOLSTENHOLME R, et al. Direct detection of peptides and small proteins in fingermarks and determination of sex by MALDI mass spectrometry profiling[J]. Analyst, 2012, 137(1): 4686-4692. [30] GORKA M, AUGSBURGER M, THOMAS A, et al. Molecular composition of fingermarks: assessment of the intra- and inter-variability in a small group of donors using MALDI-MSI[J]. Forensic Chem, 2019, 12(2019): 99-106. [31] VAN DAM A, VAN WEERT A, FALKENA K, et al. Sex determination from fingermarks using fluorescent in situ hybridization[J]. Anal Methods, 2018, 10(12): 1413-1419. [32] VAN DAM A, AALDERS M C G, VAN LEEUWEN T G, et al. The compatibility of fingerprint visualization techniques with immunolabeling[J]. J Forensic Sci, 2013, 58(4): 999-1002. [33] VAN DAM A, AALDERS M C G, DE PUIT M, et al. Immunolabeling and the compatibility with a variety of fingermark development techniques[J]. Sci Justice, 2014, 54(5): 356-362. [34] RAISZADEH M M, ROSS M M, RUSSO P S, et al. Proteomic analysis of eccrine sweat: implications for the discovery of schizophrenia biomarker proteins[J]. J Proteome Res, 2012, 11(4): 2127-2139. [35] PHAN K, BARASH M, SPINDLER X, et al. Retrieving forensic information about the donor through bacterial profiling[J]. Int J Leg Med, 2020, 134(1): 21-29. [36] MOU Y, RABALAIS J W. Detection and identification of explosive particles in fingerprints using attenuated total reflection-Fourier transform infrared spectromicroscopy[J]. J Forensic Sci, 2009, 54(4): 846-850. [37] ABDELHAMID M, FORTES F J, HARITH M A, et al. Analysis of explosive residues in human fingerprints using optical catapulting-laser-induced breakdown spectroscopy[J]. J Anal At Spectrom, 2011, 26(7): 1445-1450. [38] KAPLAN-SANDQUIST K, LEBEAU M A, MILLER M L. Chemical analysis of pharmaceuticals and explosives in fingermarks using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry[J]. Forensic Sci Int, 2014, 235: 68-77. [39] FERNÁNDEZ DE LA OSSA MA Á, GARCÍA-RUIZ C, AMIGO J M. Near infrared spectral imaging for the analysis of dynamite residues on human handprints[J]. Talanta, 2014, 130: 315-321. [40] BANAS A, BANAS K, LO M K F, et al. Detection of high-explosive materials within fingerprints by means of optical-photothermal infrared spectromicroscopy[J]. Anal Chem, 2020, 92(14): 9649-9657. [41] ISHIYAMA I, NAGAI T O, NAGAI T A, et al. The significance of drug analysis of sweat in respect to rapid screening for drug abuse[J]. Z Rechtsmed, 1979, 82(4): 251-256. [42] DAY J S, EDWARDS H G M, DOBROWSKI S A, et al. The detection of drugs of abuse in fingerprints using Raman spectroscopy I: latent fingerprints[J]. Spectrochim Acta Part A, 2004, 60: 563-568. [43] DAY J S, EDWARDS H G M, DOBROWSKI S A, et al. The detection of drugs of abuse in fingerprints using Raman spectroscopy II: cyanoacrylate-fumed fingerprints[J]. Spectrochim Acta Part A, 2004, 60: 1725-1730. [44] HAZARIKA P, JICKELLS S M, WOLFF K, et al. Imaging of latent fingerprints through the detection of drugs and metabolites[J]. Angew Chem Int Ed, 2008, 47(52): 10167-10170. [45] HAZARIKA P, JICKELLS S M, RUSSELL D A. Rapid detection of drug metabolites in latent fingermarks[J]. Analyst, 2009, 134(1): 93-96. [46] HAZARIKA P, JICKELLS S M, WOLFF K, et al. Multiplexed detection of metabolites of narcotic drugs from a single latent fingermark[J]. Anal Chem, 2010, 82(22): 9150-9154. [47] VAN DER HEIDE S, CALAVIA P, HARDWICK S, et al. A competitive enzyme immunoassay for the quantitative detection of cocaine from banknotes and latent fingermarks[J]. Forensic Sci Int, 2015, 250: 1-7. [48] HUDSON M, STUCHINSKAYA T, RAMMA S, et al. Drug screening using the sweat of a fingerprint: lateral flow detection of Δ9-tetrahydrocannabinol, cocaine, opiates and amphetamine[J]. J Anal Toxicol, 2019, 43: 88-95. [49] ZHOU J, ZHAO G, LU W, et al. Nanocarrier-based biological fluorescent probes for simultaneous detection of ketamine and amphetamine in latent fingermarks[J]. Nano, 2019, 14(02): 135-144. [50] SOUZA M A, DE OLIVEIRA K V, OLIVEIRA F C C, et al. The adsorption of methamphetamine on Ag nanoparticles dispersed in agarose gel-detection of methamphetamine in fingerprints by SERS[J]. Vib Spectrosc, 2018, 98: 152-157. [51] HAI J, WANG H, SUN P, et al. Smart responsive luminescent aptamer-functionalized covalent organic framework hydrogel for high-resolution visualization and security protection of latent fingerprints[J]. ACS Appl Mater Interfaces, 2019, 11(47): 44664-44672. [52] GUINAN T, DELLA VEDOVA C, KOBUS H, et al. Mass spectrometry imaging of fingerprint sweat on nanostructured silicon[J]. Chem Commun, 2015, 51(28): 6088-6091. [53] GROENEVELD G, DE PUIT M, BLEAY S, et al. Detection and mapping of illicit drugs and their metabolites in fingermarks by MALDI MS and compatibility with forensic techniques[J]. Sci Rep, 2015, 5(11776): 1-13. [54] COSTA C, WEBB R, PALITSIN V, et al. Rapid, secure drug testing using fingerprint development and paper spray mass spectrometry[J]. Clin Chem, 2017, 63(11): 1745-1752. [55] LEGGETT R, LEE-SMITH E E, JICKELLS S M, et al. “Intelligent” fingerprinting: simultaneous identification of drug metabolites and individuals by using antibody-functionalized nanoparticles[J]. Angew Chem Int Ed, 2007, 46(22): 4100-4103. [56] BENTON M, CHUA M J, GU F, et al. Environmental nicotine contamination in latent fingermarks from smoker contacts and passive smoking[J]. Forensic Sci Int, 2010, 200(1/2/3): 28-34. [57] BODDIS A M, RUSSELL D A. Simultaneous development and detection of drug metabolites in latent fingermarks using antibody-magnetic particle conjugates[J]. Anal Methods, 2011, 3(3): 519-523. [58] SCOTCHER K, BRADSHAW R. The analysis of latent fingermarks on polymer banknotes using MALDI-MS[J]. Sci Rep, 2018, 8: 1-13. [59] GOUCHER E, KICMAN A, SMITH N, et al. The detection and quantification of lorazepam and its 3-O-glucuronide in fingerprint deposits by LC-MS/MS[J]. J Sep Sci, 2009, 32(13): 2266-2272. [60] KUWAYAMA K, MIYAGUCHI H, YAMAMURO T, et al. Effectiveness of saliva and fingerprints as alternative specimens to urine and blood in forensic drug testing[J]. Drug Test Anal, 2015: 8(7): 644-651. [61] RICCI C, KAZARIAN S G. Collection and detection of latent fingermarks contaminated with cosmetics on nonporous and porous surfaces[J]. Surf Interface Anal, 2010, 42(5): 386-392. [62] HARTZELL-BAGULEY B, HIPP R E, MORGAN N R, et al. Chemical composition of latent fingerprints by gas chromatography-mass spectrometry[J]. J Chem Educ, 2007, 84(4): 689-691. [63] BRADSHAW R, WOLSTENHOLME R, FERGUSON L S, et al. Spectroscopic imaging based approach for condom identification in condom contaminated fingermarks[J]. Analyst, 2013, 138(9): 2546-2557. [64] HINNERS P, OÂ K C. Revealing individual lifestyles through mass spectrometry imaging of chemical compounds in fingerprints[J]. Sci Rep, 2018, 8(5149): 1-12. [65] ZHENG L N, MA R L, LI Q, et al. Elemental analysis and imaging of sunscreen fingermarks by X-ray fluorescence[J]. Anal Bioanal Chem, 2019, 411(18): 4151-4157. [66] 史俊稳, 郑令娜, 马荣梁, 等. 基于空气动力辅助解吸电喷雾质谱技术的指纹化学成像研究[J] 分析化学, 2019, 47(12): 1909-1914. SHI W J, ZHENG L N, MA R L, et al. Chemical analysis and imaging of fingerprints by air-flow assisted desorption electrospray ionization mass spectrometry[J]. Chinese J Anal Chem, 2019, 47(12): 1909-1914. [67] 李文杰, 孙令辉, 游伟, 等. 基于飞行时间二次离子质谱成像技术的人民币上指纹化学成像研究[J]. 分析化学, 2020, 48(11): 1511-1518. LI W J, SUN L H, YOU W, et al. Chemical imaging of fingerprint on RMB banknotes using time of flight secondary ion mass spectrometry[J]. Chinese J Anal Chem, 2020, 48(11): 1511-1518. [68] ZHAO Z, SHEN J, WANG M. Simultaneous imaging of latent fingerprint and quantification of nicotine residue by NaYF4∶Yb/Tm upconversion nanoparticles[J]. Nanotechnology, 2020, 31(14): 1-8. [69] KATHIRAVAN A, GOWRI A, SRINIVASAN V, et al. A simple and ubiquitous device for picric acid detection in latent fingerprints using carbon dots[J]. Analyst, 2020, 145(13): 4532-4539. [70] VAN DAM A, VAN BEEK F T, AALDERS M C G, et al. Techniques that acquire donor profiling information from fingermarks-a review[J]. Sci Justice, 2016, 56(2): 143-154. |
[1] | Lin YUAN, Yan WU, Liu-Xi CHU, Wei WANG, Min-Hui ZHU, He ZHANG, Jin YANG, Hui-Hua DENG. Determination of Thyroids and Steroids in Hair by High Performance Liquid Chromatography Tandem Mass Spectrometry [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1703-1715. |
[2] | Ying-Yi HUO, Maripat XAMXIDIN, Min WU. Simultaneous and Rapid Determination of Four Pyridine Nucleotide Coenzymes in Cells by Ultra Performance Liquid Chromatography-Mass Spectrometry [J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 332-339. |
[3] | WANG Cong, ZHAO Xiao-Yu, WANG Hai-Yan, CAO Jin, WANG Gang-Li. Detection of 73 Veterinary Drugs Residues in Animal Muscle Tissues by High Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry [J]. Chinese Journal of Applied Chemistry, 2021, 38(12): 1663-1675. |
[4] | WANG Wei, WU Yan, CHU Liu-Xi, YUAN Lin, ZHU Min-Hui, YANG Jin, DENG Hui-Hua. Detection of Endocannabinoids and Glucocorticoids in Hair of People Living with HIV by High Performance Liquid Chromatography Tandem Mass Spectrometry [J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1521-1530. |
[5] | ZHANG Hui-E, HOU Jian-Feng, WANG Jing-Yuan, ZHU Shuang, DU Lian-Yun, YE Ping, WEI Kun, CHEN Chang-Bao, LI Guang, WANG En-Peng. A Differential Study on in vitro Antioxidant Activity and Extract Composition of Different Parts of Panax Ginseng [J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1531-1540. |
[6] | WANG Wen-Hua, MA Jun, ZANG Wen-Sheng, ZHANG Hong-Zhou, GONG Yu-Rong, QI Feng-Li, SU Ji-Gong, WAN Jian-Feng, FAN Hong-Kai. Determination of N-Nitrosodimethylamine in Spiramycin by Gas Chromatography-Tandem Mass Spectrometry [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 1007-1013. |
[7] | LUO Ce, YAN Yan, LI Jian, LIU Ting, BAI Huan-Huan, LU Fan, FENG Jing. Determination of Trace Iron in High Purity Titanium by Methane Dynamic Reaction-Inductively Coupled Plasma Mass Spectrometry Standard Addition Method [J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 874-880. |
[8] | YAN Yi-Meng, YUE Ke-Xin, LIU Yu-Sheng, CHEN Ge, TIAN Han-Wen, LIU Zhong-Ying, LIU Zhi-Qiang, SONG Feng-Rui, PI Zi-Feng. Characterization of Components in Huangying Kechuan Syrup by Ultra-high Liquid Chromatography Tandem Quadrupole-time-of-flight Mass Spectrometry [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 276-288. |
[9] | ZHANG Nan, LI Tie, YANG Guang, HUANG Xin, YUE Hao, WANG Yang, LIU Jun-Tong, LIU Shu-Ying, WANG Fu-Chun. Screening for Urine Metabolic Biomarkers of Transient Ischemic Attack [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 305-314. |
[10] | YUE Hao, ZHOU Dong-Yue, ZHANG Mei-Yu, ZHANG Yan, DAI Yu-Lin, ZHENG Fei, ZHU Ying-Hao. In vitro Biotransformation of Protopanaxtriol Saponins from Red Ginseng by Intestinal Flora and Its Effect on Intestinal Flora [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 323-330. |
[11] | JIANG Tao, DU Lianyun, ZHU Shuang, WANG Huan, ZHAN Yu, YU Ping, ZHANG Zhe, WANG Enpeng, CHEN Changbao. Rapid Determination of Three Components in Cosmetics by Using Direct Real-time Analysis Ionization Mass Spectrometry [J]. Chinese Journal of Applied Chemistry, 2020, 37(11): 1333-1339. |
[12] | CAO Huihui, PENG Jingdong*, ZHANG Lei. Quantitative Determination of Bezafibrate in Rat Plasma Using HPLC-MS [J]. Chinese Journal of Applied Chemistry, 2012, 29(05): 591-596. |
[13] | LI Xiaoli1,2, LIU Baofeng2, XIE Wenbing2, DENG Jiancheng1*, XU Jingwei2. The Contrastive Analysis of Puffballs Produced from Inner Mongolia and Jilin [J]. Chinese Journal of Applied Chemistry, 2012, 29(04): 477-482. |
[14] | JIANG Cuicui1, LUO Liping2, HU Bin1, TANG Liang1, CHEN Huanwen1*. In situ Detection of Sinapine and Its Decline Studied in Radish Taproot by Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry [J]. Chinese Journal of Applied Chemistry, 2011, 28(04): 432-437. |
[15] | LONG Yun-Fei *,HE Quan,CHEN Shu. Synthesis of Copper Sulfide Nanoparticles and Its Application to the Determination of Mercury Ion [J]. Chinese Journal of Applied Chemistry, 2010, 27(11): 1318-1321. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||