[1] | Zhao Z W,Yan R,Yi X, et al. Bacteria-Activated Theranostic Nanoprobes Against Methicillin-Resistant Staphylococcus aureus Infection[J]. ACS Nano,2017,11(5):4428-4438. | [2] | Huang J L,Zhou J F,Zhuang J Y, et al. Strong Near-Infrared Absorbing and Biocompatible CuS Nanoparticles for Rapid and Efficient Photothermal Ablation of Gram-Positive and -Negative Bacteria[J]. ACS Appl Mater Interfaces,2017,9(42):36606-36614. | [3] | WANG Yingjun,HUANG Xuelian,CHEN Junjian, et al. Bacterial Infection-Microenvironment Responsive Polymeric Materials for the Treatment of Bacterial Infectious Diseases:A Review[J]. Mater Rev,2019,33(1):5-15(in Chinese). 王迎军,黄雪连,陈军建,等. 细菌感染微环境响应性高分子材料用于细菌感染性疾病的治疗[J]. 材料导报,2019,33(1):5-15. | [4] | ZHANG Chang,REN En,PANG Xin, et al. Recent Advances of Nanophotosensitizers in Antibacterial Photodynamic Therapy[J]. Chinese J Lasers,2020,47(2):0207012-1(in Chinese). 张昌,任恩,庞鑫,等. 光动力抗菌纳米制剂研究进展[J]. 中国激光,2020,47(2):0207012-1. | [5] | Hamblin M R,Hasana T. Photodynamic Therapy:A New Antimicrobial Approach to Infectious Disease?[J]. Photochem Photobiol Sci,2004,3(5):436-450. | [6] | Danilo M,Lone H,Kirsten H D, et al. Capacity of Cationic and Anionic Porphyrins to Inactivate the Potential Aquaculture Pathogen Vibrio campbellii[J]. Aquaculture,2017,473:228-236. | [7] | Sah U,Sharma K,Chaudhri N, et al. Antimicrobial Photodynamic Therapy:Single-Walled Carbon Nanotube(SWCNT)-Porphyrin Conjugate for Visible Light Mediated Inactivation of Staphylococcus aureus[J]. Colloid Surf B,2018,162:108-117. | [8] | Mariana M,Romina C,Tomas C T, et al. Photodynamic Inactivation of Multiresistant Bacteria(KPC) Using Zinc(II) Phthalocyanines[J]. Bioorg Med Chem Lett,2017,27(18):4341-4344. | [9] | Vanesa P L,Antonio R,Juan J R, et al. Daylight Photodynamic Therapy Using Methylene Blue to Treat Sheep with Dermatophytosis Caused by Arthroderma vanbreuseghemii[J]. Small Ruminant Res,2017,150:97-101. | [10] | Liu Y,Busscher H J,Zhao B R, et al. Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms[J]. ACS Nano,2016,10(4):4779-4789. | [11] | Chu L P,Gao H L,Cheng T J, et al. A Charge-Adaptive Nanosystem for Prolonged and Enhanced in Vivo Antibiotic Delivery[J]. Chem Commun,2016,52(37):6265-6268. | [12] | Radovic-Moreno A F,Lu T K,Puscasu V A,et al. Surface Charge-Switching Polymeric Nanoparticles for Bacterial Cell Wall Targeted Delivery of Antibiotics[J]. ACS Nano,2012,6(5):4279-4287. | [13] | Zhao X,Li Y,Jin D, et al. A Near-Infrared Multifunctional Fluorescent Probe with Inherent Tumor-Targeting Property for Bioimaging[J]. Chem Commun,2015,51(58):11721. | [14] | Sheng Z H,Hu D H,Zheng M B, et al. Smart Human Serum Albumin-Indocyanine Green Nanoparticles Generated by Programmed Assembly for Dual-Modal Imaging-Guided Cancer Synergistic Phototherapy[J]. ACS Nano,2014,8(12):12310-12322. | [15] | Kuo W S,Chang Y T,Cho K C, et al. Gold Nanomaterials Conjugated with Indocyanine Green for Dual-Modality Photodynamic and Photothermal Therapy[J]. Biomaterials,2012,33(11):3270-3278. |
|