应用化学 ›› 2025, Vol. 42 ›› Issue (7): 955-961.DOI: 10.19894/j.issn.1000-0518.240389
收稿日期:2024-11-27
接受日期:2025-02-01
出版日期:2025-07-01
发布日期:2025-07-23
通讯作者:
苏长艳
基金资助:
Peng WANG1, Jia-Lin GUO2, Ying ZHANG1, Chang-Yan SU1(
)
Received:2024-11-27
Accepted:2025-02-01
Published:2025-07-01
Online:2025-07-23
Contact:
Chang-Yan SU
About author:suchangyan211302@163.comSupported by:摘要:
以1030×350航空轮胎为例,采用高强力HS1400dtex/2尼龙66帘线替代1400dtex/2常规国标帘线,通过ABAQUS有限元分析软件对轮胎胎体强度、外缘尺寸进行仿真分析并重新核算轮胎重量。 结果表明,采用高强力HS1400dtex/2尼龙66帘线并减少2层胎体帘布后航空轮胎充气外直径膨胀率略小,充气断面宽膨胀率略大; 在爆破气压下(10.4 MPa),帘线角度减小后轮胎帘线受力减小,对轮胎强度有一定提升,胎体帘线角度减少1(°)为宜。 通过轮胎各部位重量核算,航空轮胎重量减轻3.1 kg,能够实现航空轮胎轻量化设计。
中图分类号:
王鹏, 郭家麟, 张莹, 苏长艳. 基于有限元仿真的轻量化航空轮胎胎体强度模拟分析[J]. 应用化学, 2025, 42(7): 955-961.
Peng WANG, Jia-Lin GUO, Ying ZHANG, Chang-Yan SU. Strength Simulation Analysis of Lightmass Aviation Tire Carcass Based on Finite Element Simulation[J]. Chinese Journal of Applied Chemistry, 2025, 42(7): 955-961.
| performance | A curtain line index | B curtain line index |
|---|---|---|
| Breaking strength/(N·root-1) | ≥215.6 | ≥237.2 |
| Fracture elongation/% | 19~23 | 19~23 |
| 66.6N constant load elongation/% | 9.0±0.6 | 9.0±0.6 |
| Diameter/mm | 0.65±0.05 | 0.65±0.05 |
表1 2种帘线性能对比
Table 1 Comparison of performance between two curtain lines
| performance | A curtain line index | B curtain line index |
|---|---|---|
| Breaking strength/(N·root-1) | ≥215.6 | ≥237.2 |
| Fracture elongation/% | 19~23 | 19~23 |
| 66.6N constant load elongation/% | 9.0±0.6 | 9.0±0.6 |
| Diameter/mm | 0.65±0.05 | 0.65±0.05 |
| Old plan (A curtain line) Fig.2A | New plan (B curtain line) Fig.2B | Steel ring position |
|---|---|---|
| 4-layer reverse packet+2-layer positive packet+4-layer positive packet | 4-layer reverse packet+4-layer positive packet | The first steel ring |
| 4-layer reverse packet+4-layer positive packet | 4-layer reverse packet+4-layer positive packet | The second steel ring |
| 4-layer reverse packet+2-layer positive packet | 4-layer reverse packet+2-layer positive packet | The third Steel Ring |
| 2-layer positive packet | 2-layer positive packet | The third Steel Ring |
表2 帘线排布情况
Table 2 Curtain line arrangement
| Old plan (A curtain line) Fig.2A | New plan (B curtain line) Fig.2B | Steel ring position |
|---|---|---|
| 4-layer reverse packet+2-layer positive packet+4-layer positive packet | 4-layer reverse packet+4-layer positive packet | The first steel ring |
| 4-layer reverse packet+4-layer positive packet | 4-layer reverse packet+4-layer positive packet | The second steel ring |
| 4-layer reverse packet+2-layer positive packet | 4-layer reverse packet+2-layer positive packet | The third Steel Ring |
| 2-layer positive packet | 2-layer positive packet | The third Steel Ring |
| 0 MPa | 1.9 MPa | 2.6 MPa | ||||
|---|---|---|---|---|---|---|
| Diameter/mm | Width/mm | Diameter/mm | Width/mm | Diameter/mm | Width/mm | |
| Old scheme | 948.8 | 293.6 | 954.4 | 328.2 | 960.2 | 333.8 |
| New scheme | 948.4 | 294.0 | 948.6 | 338.0 | 954.4 | 344.6 |
表3 充气尺寸模拟结果
Table 3 Inflation size simulation results
| 0 MPa | 1.9 MPa | 2.6 MPa | ||||
|---|---|---|---|---|---|---|
| Diameter/mm | Width/mm | Diameter/mm | Width/mm | Diameter/mm | Width/mm | |
| Old scheme | 948.8 | 293.6 | 954.4 | 328.2 | 960.2 | 333.8 |
| New scheme | 948.4 | 294.0 | 948.6 | 338.0 | 954.4 | 344.6 |
图7 轮胎充气直径(A)和轮胎充气断面宽(B)随胎体角度变化趋势
Fig.7 The trend of tire inflation diameter (A) and tire inflation cross-sectional width (B) changing with tire body angle
| No. | Assembly unit | Tire components | Original mass/kg | Improved mass/kg |
|---|---|---|---|---|
| 1 | Tread | Outer tread and inner tread | 8.80 | 8.80 |
| 2 | Sidewall | Two pieces of tire sidewall | 2.70 | 2.70 |
| 3 | Reinforcing layer | A nylon 66 cord | 3.77 | — |
| B nylon 66 cord | — | 3.32 | ||
| 4 | Carcass layer | 26 layers of A nylon 66 cord | 42.03 | — |
| 24 layers of B nylon 66 cord | — | 39.38 | ||
| 5 | Seal layer | The same as the old design | 3.30 | 3.30 |
| 6 | Steel ring | One side 3 steel rings×2 | 8.90 | 8.90 |
| 7 | Other | Total mass of film and filler | 4.50 | 4.50 |
| 8 | Total | Sum of parts | 74.00 | 70.90 |
表4 轮胎各部件质量计算
Table 4 Mass calculation of each tire component
| No. | Assembly unit | Tire components | Original mass/kg | Improved mass/kg |
|---|---|---|---|---|
| 1 | Tread | Outer tread and inner tread | 8.80 | 8.80 |
| 2 | Sidewall | Two pieces of tire sidewall | 2.70 | 2.70 |
| 3 | Reinforcing layer | A nylon 66 cord | 3.77 | — |
| B nylon 66 cord | — | 3.32 | ||
| 4 | Carcass layer | 26 layers of A nylon 66 cord | 42.03 | — |
| 24 layers of B nylon 66 cord | — | 39.38 | ||
| 5 | Seal layer | The same as the old design | 3.30 | 3.30 |
| 6 | Steel ring | One side 3 steel rings×2 | 8.90 | 8.90 |
| 7 | Other | Total mass of film and filler | 4.50 | 4.50 |
| 8 | Total | Sum of parts | 74.00 | 70.90 |
| [1] | 繆红燕, 徐鸿, 计斌, 等. 子午线轮胎的有限元分析[J]. 轮胎工业, 2001(1): 16-20. |
| LIAO H Y, XU H, JI B, et al. Finite element analysis of radial tires[J]. Tire Ind, 2001(1): 16-20. | |
| [2] | 许喆. 多工况下子午线轮胎非线性有限元分析[D]. 青岛: 青岛科技大学, 2009. |
| XU Z. Nonlinear finite element analysis of radial tire under multiple operating conditions[D]. Qingdao: Qingdao University of Science and Technology, 2009. | |
| [3] | 李双宝, 张博. 航空轮胎着陆冲击动力学仿真与安全分析[J]. 中国民航大学学报, 2024, 42(2): 58-64. |
| LI S B, ZHANG B. Impact dynamics simulation and safety analysis of aircraft tire landing[J]. J Civil Aviation Univ China, 2024, 42(2): 58-64. | |
| [4] | 孙鹏飞, 周水庭, 黄红武, 等. 子午线轮胎帘线受力特性的有限元分析[J]. 厦门理工学院学报, 2017, 25(5): 1-6. |
| SUN P F, ZHOU S T, HUANG H W, et al. Finite element analysis of stress characterstics of radial tire cord[J]. J Xiamen Univ Technol, 2017, 25(5): 1-6. | |
| [5] | 李汉堂. 轮胎轻量化技术研究进展[J]. 中国橡胶, 2006(23): 31-35. |
| LI H T. Research progress of tire lightweighting technology[J]. China Rubber, 2006(23): 31-35. | |
| [6] | 刘肖英, 焦志伟, 何雪涛, 等. 基于有限元法的航空轮胎瞬态冲击性能分析[J]. 轮胎工业, 2014, 34(9): 539-543. |
| LIU X Y, JIAO Z W, HE X T, et al. Transient impact performance analysis of aviation tires based on finite element method[J]. Tire Ind, 2014, 34(9): 539-543. | |
| [7] | 郭晓辉, 袁晓静, 张泽, 等. 橡胶帘线复合材料界面失效机制[J]. 高分子材料科学与工程, 2022, 38(11): 88-95. |
| GUO X H, YUAN X J, ZHANG Z, et al. Interface failure mechanism of rubber cord composites[J]. Polym Mater Sci Eng, 2022, 38(11): 88-95. | |
| [8] | 侯险峰, 李秉超, 陈毅敏, 等. 纤维帘线浸渍试验装置的发展和应用[A]. 中国化工学会橡塑绿色制造专业委员会新型绿色浸渍材料和环保新技术发展大会资料汇编, 2019: 284-289. |
| HOU X F, LI B C, CHEN Y M, et al. Development and application of impregnation test device for fiber cord[A]. China Chemical Society rubber and plastic Green Manufacturing Committee New green impregnated materials and environment conference data compilation, 2019: 284-289. |
| [1] | 杨晓, 孙德文. 多臂星形链拓扑结构对嵌段共聚物非平衡态自组装行为的影响[J]. 应用化学, 2025, 42(8): 1087-1095. |
| [2] | 赖晓龙, 邹志云, 谢凤翔, 黎文娥. 聚丙烯纤维对改性沥青混凝土性能影响分析[J]. 应用化学, 2025, 42(7): 962-970. |
| [3] | 蒋庆文, 张迎, 李海曈, 韩晓军. 复合混凝剂在低温低浊水处理中的研究进展[J]. 应用化学, 2025, 42(5): 656-667. |
| [4] | 周天翊, 张小虎, 胡广利, 刘三荣, 毕吉福. 丁二烯-异戊二烯聚合物纳米复合材料中黏弹性测试及其参数间相关性[J]. 应用化学, 2025, 42(5): 684-692. |
| [5] | 高宇新, 刘巍, 李瑞, 潘艳雄, 王登飞, 张茗郡, 何书艳, 姬相玲. 比较4种应用于薄膜与管道的聚乙烯树脂的链结构特点[J]. 应用化学, 2025, 42(4): 490-498. |
| [6] | 毛文强, 李佳鹏, 王冬冬, 潘艳雄, 姬相玲, 姜伟. 环氧类扩链剂ADR-4468改性氯化聚丙撑碳酸酯/聚丁二酸丁二醇酯共混物的制备及其性能[J]. 应用化学, 2025, 42(2): 201-211. |
| [7] | 罗玉梅, 周昀, 周易, 邵雅菲. 聚脲气凝胶的制备及其对轻质复合砂浆的影响[J]. 应用化学, 2025, 42(2): 238-248. |
| [8] | 唐国鸿, 赵振, 仲家慧, 徐小玲, 孙莹潞, 盛德鲲, 杨宇明. 氨基酸及其衍生物的生物基聚氨酯的制备和性能的研究进展[J]. 应用化学, 2025, 42(1): 42-57. |
| [9] | 宋新月, 胡本旻, 孟帅, 石恒冲, 施德安, 王兆阳, 杨华伟, 栾世方. 缠结度对超高相对分子质量聚乙烯凝聚态结构和冲击强度的影响[J]. 应用化学, 2025, 42(1): 58-68. |
| [10] | 李靖威, 郑睿鹏, 杨明, 赵娟, 郑帅, 李娅珂, 戚云霞, 徐义全, 刘佰军. 辐照聚乙烯热熔带的性能及在电缆绝缘层修复中的应用[J]. 应用化学, 2024, 41(11): 1648-1655. |
| [11] | 王晓贺, 徐琳, 付丽. 整合诊疗功能的外科缝合线的研究进展[J]. 应用化学, 2024, 41(10): 1399-1408. |
| [12] | 孔令曜, 赵继永, 曲敏杰, 王红华. 高残炭热固性聚芳醚酮的制备与表征[J]. 应用化学, 2024, 41(10): 1436-1444. |
| [13] | 罗文斌, 晁自胜, 范金成. 科教融合理念下储能高分子材料教学探索与实践[J]. 应用化学, 2024, 41(10): 1519-1524. |
| [14] | 洪宗昊, 吴世龙, 陈全. 非缠结苯乙烯-对叔丁基苯乙烯共聚物的非线性拉伸流变行为[J]. 应用化学, 2024, 41(8): 1098-1106. |
| [15] | 李鸿, 孙德文. 嵌段共聚物Single plumber′s nightmare网络结构的动力学构筑方案[J]. 应用化学, 2024, 41(8): 1107-1115. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||