应用化学 ›› 2025, Vol. 42 ›› Issue (7): 945-954.DOI: 10.19894/j.issn.1000-0518.240330
收稿日期:2024-10-20
接受日期:2025-05-12
出版日期:2025-07-01
发布日期:2025-07-23
通讯作者:
郑立辉
基金资助:
Li-Hui ZHENG1,2(
), Bo-Ao DU1,2
Received:2024-10-20
Accepted:2025-05-12
Published:2025-07-01
Online:2025-07-23
Contact:
Li-Hui ZHENG
About author:zhenglihui@nepu.edu.cnSupported by:摘要:
以火炬树叶为原料,K2CO3为活化剂,以“碳化-活化”两步法制备了不同质量比的多孔碳材料TLPC-x(x=0,1,2,3,4,x为活化剂与碳源的质量比),通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)和比表面积分析(BET)等对材料的形貌、结构进行表征,采用循环伏安法(CV)、循环充放电测试(GCD)等电化学测试手段测试材料的电化学性能。 结果表明: K2CO3有较好的造孔作用,其中TLPC-3孔道结构最为丰富,比表面积高达2193.9 m2/g; 三电极体系下,TLPC-3在0.5 A/g下比电容达287.8 F/g,是TLPC-0的3.2倍。 在两电极体系中,功率密度125 W/kg时能量密度达8.05 Wh/kg,且在10 A/g条件下历经10000次循环充放电测试后,电容仍有98.7%的保持率。
中图分类号:
郑立辉, 杜博澳. 火炬树叶衍生多孔碳材料的制备及其电化学性能[J]. 应用化学, 2025, 42(7): 945-954.
Li-Hui ZHENG, Bo-Ao DU. Preparation of Porous Carbon Materials Derived from Rhus typhina Leaves and Their Electrochemical Properties[J]. Chinese Journal of Applied Chemistry, 2025, 42(7): 945-954.
图2 (A) TLPC-0、(B) TLPC-1、(C) TLPC-2、(D) TLPC-3和(E) TLPC-4样品的SEM图
Fig.2 SEM image of (A) TLPC-0, (B) TLPC-1, (C) TLPC-2, (D) TLPC-3 and (E) TLPC-4 sample
| Sample | ||||
|---|---|---|---|---|
| TLPC-1 | 1 534.6 | 792.2 | 742.4 | 1.04 |
| TLPC-2 | 1 899.9 | 824.5 | 1 075.4 | 1.07 |
| TLPC-3 | 2 193.9 | 938.6 | 1 255.3 | 1.13 |
| TLPC-4 | 1 417.9 | 636.7 | 781.2 | 0.96 |
表1 TLPC-x的孔结构参数
Table 1 Pore structure parameters of TLPC-x
| Sample | ||||
|---|---|---|---|---|
| TLPC-1 | 1 534.6 | 792.2 | 742.4 | 1.04 |
| TLPC-2 | 1 899.9 | 824.5 | 1 075.4 | 1.07 |
| TLPC-3 | 2 193.9 | 938.6 | 1 255.3 | 1.13 |
| TLPC-4 | 1 417.9 | 636.7 | 781.2 | 0.96 |
图6 TLPC-3的XPS谱图A. Overall spectrum; B. High-resolution XPS of C1s; C. High-resolution XPS of O1s; D. High-resolution XPS of N1s
Fig.6 XPS spectra of TLPC-3
图7 TLPC-x的电化学性能A. Cyclic voltammetry curve (50 mV/s); B. Constant current charge discharge curve (0.5 A/g); C. Specific capacitance at 0.5~20 A/g; D. Cyclic voltammetry curves of TLPC-3 at different scan rates; E. Constant current charge discharge curve of TLPC-3 at 0.5~20 A/g; F. Total charge storage of TLPC-3 at 10 mV/s; G. Total charge storage of TLPC-3 at different scanning rates; H. EIS of TLPC-x; I. Bode plot
Fig.7 Electrochemical performance of TLPC-x
| Sample | Rs/Ω | Rct/Ω |
|---|---|---|
| TLPC-0 | 0.84 | 0.43 |
| TLPC-1 | 0.93 | 0.96 |
| TLPC-2 | 1.01 | 0.09 |
| TLPC-3 | 0.96 | 0.07 |
| TLPC-4 | 0.97 | 0.10 |
表2 TLPC-x的等效串联电阻(Rs)和电荷转移电阻值(Rct)
Table 2 Equivalent series resistance (Rs) and charge transfer resistance values (Rct) of TLPC-x
| Sample | Rs/Ω | Rct/Ω |
|---|---|---|
| TLPC-0 | 0.84 | 0.43 |
| TLPC-1 | 0.93 | 0.96 |
| TLPC-2 | 1.01 | 0.09 |
| TLPC-3 | 0.96 | 0.07 |
| TLPC-4 | 0.97 | 0.10 |
| [1] | WANG Q, LIU F, JIN Z, et al. Hierarchically divacancy defect building dual-activated porous carbon fibers for high‐performance energy-storage devices[J]. Adv Funct Mater, 2020, 30(39): 2002580. |
| [2] | LI Y, XIAO S, QIU T, et al. Recent advances on energy storage microdevices: from materials to configurations[J]. Energy Stor Mater, 2022, 45: 741-767. |
| [3] | MAMANI A, BARREDA D, SARDELLA F M, et al. Fe-doped biomass-derived activated carbons as sustainable electrode materials in supercapacitors using different electrolytes[J]. J Electroanal Chem, 2024, 965: 118366. |
| [4] | DEEPI A S, NESARAJ A S. Design of best performing hexagonal shaped Ag@CoS/rGO nanocomposite electrode material for electrochemical supercapacitor application[J]. Trans Nonferrous Met Soc China, 2020, 30(10): 2764-2774. |
| [5] | MOHAMMED A A, DAS J K, HOTA A, et al. Facile synthesis of NiMoO4@MnO2 nanoflower and waste biomass-derived N, P, and S self-doped carbon for advanced asymmetric supercapacitor electrode materials[J]. Diam Relat Mater, 2024, 144: 110940. |
| [6] | GUO L C, HU P, WEI H. Development of supercapacitor hybrid electric vehicle[J]. J Energy Storage, 2023, 65: 107269. |
| [7] | MWAMBELEKO J J, THANATCHAI K. Supercapacitor and accelerating contact lines hybrid tram system[J]. J Energy Storage, 2021, 44: 103277. |
| [8] | QIU B, HU W, ZHANG D, et al. Biomass-derived carbon as a potential sustainable material for supercapacitor-based energy storage: design, construction and application[J]. J Anal Appl Pyrolysis, 2024, 181: 106652. |
| [9] | LIANG L, LI L, CHEN R, et al. Research advances in plant-derived activated carbon for electric double layer capacitors[J]. J Alloys Compd, 2024, 992: 174641. |
| [10] | HEPSIBA P, RAJKUMAR S, ELANTHAMILAN E, et al. Biomass-derived porous activated carbon from anacardium occidentale shell as electrode material for supercapacitors [J]. New J Chem, 2022, 46(18): 8863-8873. |
| [11] | 习爽, 高兴伟, 程溪明, 等. 在KOH活化的激光诱导石墨烯上沉积MnO2用于柔性平面微型超级电容器[J]. 新型炭材料(中英文), 2023, 38(5): 913-924. |
| XI S, GAO X W, CHENG X M, et al. Deposition of MnO2 on KOH activated laser-induced graphene for flexible planar micro supercapacitors[J]. New Carbon Mater (Chin Eng), 2023, 38(5): 913-924. | |
| [12] | LIU N, ZHAO J, OSMAN S, et al. Honeycomb-like porous carbon derived from fluorinated magnesium-based metal organic frameworks as an electrode material for supercapacitors[J]. J Energy Storage, 2023, 63: 106939. |
| [13] | ZHANG D, ZHANG Y, LIU H, et al. Effect of pyrolysis temperature on carbon materials derived from reed residue waste biomass for use in supercapacitor electrodes[J]. J Phys Chem Solids, 2023, 178: 111318. |
| [14] | 冷爽, 王韬, 杨敏, 等. 基于聚多巴胺的氮掺杂碳材料的制备及其电化学性能[J]. 应用化学, 2018, 35(4): 477-483. |
| LENG S, WANG T, YANG M, et al. Preparation and electrochemical properties of nitrogen-doped carbon materials based on polydopamine[J]. Chin J Appl Chem, 2018, 35(4): 477-483. | |
| [15] | OSMAN S, SENTHIL R A, PAN J, et al. A novel coral structured porous-like amorphous carbon derived from zinc-based fluorinated metal-organic framework as superior cathode material for high performance supercapacitors[J]. J Power Sources, 2019, 414: 401-411. |
| [16] | PANTRANGI M, SANGARAJU S, FEN R. Recent progress on biomass waste derived activated carbon electrode materials for supercapacitors applications-a review[J]. J Energy Storage, 2022, 54: 105290. |
| [17] | 叶绍凤, 刘文贤, 沙东勇, 等. 泡沫状二维复合材料的合成及超级电容器性能[J]. 应用化学, 2018, 35(3): 351-355. |
| YE S F, LIU W X, SHA D Y, et al. Synthesis of foam-like two-dimensional composite materials and their performance in supercapacitors[J]. Chin J Appl Chem, 2018, 35(3): 351-355. | |
| [18] | SUN J, NIU J, LIU M, et al. Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors[J]. Appl Surf Sci, 2018, 427: 807-813. |
| [19] | JELOO G A Z, GHASEMZADEH S, MONFARED H H, et al. From barley straw biomass to N/S co-doped as electrode material for high-performance supercapacitor applications[J]. Mater Chem Phys, 2024, 323: 129653. |
| [20] | XIANG J, ZHENG H, XUE H, et al. Performance study of high energy storage supercapacitor from waste corn husk biomass electrode materials[J]. J Phys Chem Solids, 2024, 194: 112265. |
| [21] | 江鼎康. 家庭花卉栽培[M]. 上海: 上海科学技术文献出版社, 1998, 2: 333-334. |
| JIANG D K. Family flower cultivation[M]. Shanghai: Shanghai Scientific and Technological Literature Publishing House, 1998, 2: 333-334. | |
| [22] | BENOY M S, HAZARIKA A, RAJBONGSHI A, et al. Hierarchical porous carbon derived from petroleum coke via one-step chemical activation for the fabrication of a supercapacitor and real time clock application[J]. RSC Adv, 2024, 14(30): 21411-21424. |
| [23] | BANDARA T M W J, ALAHAKOON A M B S, MELLANDER B E, et al. Activated carbon synthesized from Jack wood biochar for high performing biomass derived composite double layer supercapacitors[J]. Carbon Trends, 2024, 15: 100359. |
| [24] | LEE K C, LIM M S W, HONG Z Y, et al. Coconut shell-derived activated carbon for high-performance solid-state supercapacitors[J]. Energies, 2021, 14: 154546. |
| [25] | 谢亚桥, 赵佳欣, 李杰兰, 等. 氯化钠模板诱导木质素基多孔炭的制备及其超级电容器性能[J]. 应用化学, 2019, 36(4): 482-488. |
| XIE Y Q, ZHAO J X, LI J L, et al. Preparation of lignin-based porous carbon induced by sodium chloride template and its supercapacitor properties[J]. Chin J Appl Chem, 2019, 36(4): 482-488. | |
| [26] | GENG X, SINGH G, SATHISH C I, et al. Biomass derived nanoarchitectonics of porous carbon with tunable oxygen functionalities and hierarchical structures and their superior performance in CO2 adsorption and energy storage[J]. Carbon, 2023, 214: 118347. |
| [27] | LI Y, SUN Y, LI H, et al. High nitrogen-oxygen dual-doped three-dimensional hierarchical porous carbon network derived from Eriocheir sinensis for advanced supercapacitors[J]. Energy, 2023, 270: 126942. |
| [28] | LI Z, GUO D, LIU Y, et al. Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors[J]. Chem Eng J, 2020, 397: 125418. |
| [29] | OLABI A G, ABBAS Q, AL MAKKY A, et al. Supercapacitors as next generation energy storage devices: properties and applications[J]. Energy, 2022, 248: 123617. |
| [30] | ZHANG X, WANG Y, YU X, et al. High-performance discarded separator-based activated carbon for the application of supercapacitors[J]. J Energy Storage, 2021, 44(PA): 103378. |
| [31] | FRANCIS M J, F M E, SCOTT G C, et al. Template-free route to PEDOT nanofibers for 3D electrodes with ultrahigh capacitance and excellent cycling stability[J]. Energy Stor Mater, 2023, 61: 102850. |
| [32] | DONG L, ZHANG L, LIN S, et al. Building vertically-structured, high-performance electrodes by interlayer-confined reactions in accordion-like, chemically expanded graphite[J]. Nano Energy, 2020, 70: 104482. |
| [33] | WU M, WANG M, JOW J. Fabrication of porous nickel oxide film with open macropores by electrophoresis and electrodeposition for electrochemical capacitors[J]. J Power Sources, 2010, 195(12): 3950-3955. |
| [34] | LIANG Q, WAN J, JI P, et al. Continuous and integrated PEDOT@Bacterial cellulose/CNT hybrid helical fiber with “reinforced cement-sand” structure for self-stretchable solid supercapacitor[J]. Chem Eng J, 2022, 427: 131904. |
| [35] | RAYMUNDO-PINERO E, CADEK M, BEGUIN F. Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds[J]. Adv Funct Mater, 2009, 19(7): 1032-1039. |
| [36] | WANG D, ZHOU Q, FU H, et al. A Fe2(SO4)3-assisted approach towards green synthesis of cuttlefish ink-derived carbon nanospheres for high-performance supercapacitors[J]. J Colloid Interface Sci, 2023, 638: 695-708. |
| [1] | 韩照徽, 孟良, 秦晨, 曹海亮, 侯莹. 多孔碳微球的可控构筑及其在钠离子电池中的应用[J]. 应用化学, 2024, 41(9): 1333-1341. |
| [2] | 李远杰, 范冰冰, 张君丽, 周艳梅. 氨基酸离子液体在能量存储和生物质资源化中的研究进展[J]. 应用化学, 2024, 41(3): 391-404. |
| [3] | 胡生隆, 雷振隆, 陈德军. 超交联聚萘基微孔炭的制备及其电化学性能[J]. 应用化学, 2024, 41(12): 1742-1750. |
| [4] | 张鼎, 杨微微, 缪嵩松, 苏怡. 含氮多孔碳限域金纳米粒子用于电化学检测液相二氧化氯[J]. 应用化学, 2023, 40(11): 1572-1580. |
| [5] | 樊哲,张盛盛,唐家豪,范萍. 分级纳米材料的结构、制备及其应用[J]. 应用化学, 2020, 37(5): 489-501. |
| [6] | 张晓博, 辛海瑛, 许爽, 张兴海, 王丽秋. 纤维素凝胶电解质及其在超级电容器中的应用[J]. 应用化学, 2020, 37(5): 547-554. |
| [7] | 安露露, 米杰. 镍钴氢氧化物的制备及其电化学性能[J]. 应用化学, 2020, 37(5): 579-586. |
| [8] | 张晓博, 辛海瑛, 许爽, 张兴海, 王丽秋. 纤维素凝胶电解质及其在超级电容器中的应用[J]. 应用化学, 2020, 37(5): 0-. |
| [9] | 陈佳琪, 周焱, 孙敬文, 朱俊武, 汪信, 付永胜. 基于金属有机框架中空材料的研究进展[J]. 应用化学, 2020, 37(11): 1221-1235. |
| [10] | 谢亚桥, 赵佳欣, 李杰兰, 徐子迪, 曲江英, 田运齐, 高峰. 氯化钠模板诱导木质素基多孔炭的制备及其超级电容器性能[J]. 应用化学, 2019, 36(4): 482-488. |
| [11] | 谢超, 洪国辉, 赵丽娜, 杨伟强, 王继库. 石墨烯/聚吡咯纳米纤维超级电容器电极材料的制备及其电化学性能[J]. 应用化学, 2019, 36(12): 1422-1429. |
| [12] | 邓筠飞,杜卫民,王梦瑶,位庆贺. 基于玉米秸秆合成的多孔生物质炭材料及其电化学储能[J]. 应用化学, 2019, 36(11): 1323-1332. |
| [13] | 符婉琛, 李倩, 冯冬冬, 王伟. 不同形貌氧化镍纳米材料的合成及其电化学性能[J]. 应用化学, 2019, 36(1): 75-82. |
| [14] | 陈昆峰,薛冬峰. 离子的胶体状态与其电化学储能极限[J]. 应用化学, 2018, 35(9): 1067-1075. |
| [15] | 冷爽, 王韬, 杨敏, 赵彦芝, 陆伟, 王若明, 孙国英. 基于聚多巴胺的氮掺杂碳材料的制备及其电化学性能[J]. 应用化学, 2018, 35(4): 477-483. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||