应用化学 ›› 2024, Vol. 41 ›› Issue (10): 1445-1456.DOI: 10.19894/j.issn.1000-0518.240073

• 研究论文 • 上一篇    下一篇

再生纤维素微球的制备及其吸附亚甲基蓝和叶酸负载

梁兴毅1,2, 李亚2(), 荀京天2, 张巍巍1, 金长子1, 王锐1, 仇丹1,2, 何宇鹏1,3   

  1. 1.辽宁石油化工大学石油化工学院,抚顺 113001
    2.宁波工程学院材料与化学工程学院,宁波 315211
    3.大连理工大学宁波研究院,宁波 315016
  • 收稿日期:2024-03-06 接受日期:2024-09-13 出版日期:2024-10-01 发布日期:2024-10-29
  • 通讯作者: 李亚
  • 基金资助:
    宁波市自然科学基金(2019C10037)

Preparation of Regenerated Cellulose Microspheres and Their Adsorption of Methylene Blue and Loading of Folic Acid

Xing-Yi LIANG1,2, Ya LI2(), Jing-Tian XUN2, Wei-Wei ZHANG1, Chang-Zi JIN1, Rui WANG1, Dan QIU1,2, Yu-Peng HE1,3   

  1. 1.School of Petrochemical Engineering,Liaoning Petrochemical University,Fushun 113001,China
    2.School of Materials and Chemical Engineering,Ningbo University of Technology,Ningbo 315211,China
    3.Ningbo Research Institute,Dalian University of Technology,Ningbo 315016,China
  • Received:2024-03-06 Accepted:2024-09-13 Published:2024-10-01 Online:2024-10-29
  • Contact: Ya LI
  • About author:liya@nbut.edu.cn
  • Supported by:
    Ningbo Natural Science Foundation(2019C10037)

摘要:

以微晶纤维素(MCC)的尿素/NaOH溶液为分散相,通过乳液法制备了不同粒径的再生纤维素微球(RCM),考察了RCM对亚甲基蓝吸附行为,并探讨了再生纤维素微球对叶酸(FA)的负载性能。 扫描电子显微镜(SEM)结果表明,制备的RCM表面结构粗糙,内部呈一定的中空结构; X射线衍射(XRD)和傅里叶变换红外光谱(FT-IR)结果表明,RCM晶型由Ⅰ型变为Ⅱ型,微球的粒径随转速增大而减小,转速由400 r/min提高至转速1200 r/min时,粒径从286 μm降至27 μm,减小了约90.56%; 随水油体积比(V(MCC)∶V(LP))的减小而减小,V(MCC)∶V(LP)从1∶3降至1∶7时,粒径从311 μm降至54 μm,减小了约82.64%; 随乳化剂质量分数(w(span-80))的增加而减小,当w(span-80)为0.5%时,粒径约为276 μm,增大w(span-80)至2.5%时,粒径降至52 μm左右,减小了约81.16%。 RCM用于吸附亚甲基蓝时,72 h,吸附达到平衡; pH值为10时,吸附能力最强,吸附量为6.11 mg/g; 当RCM用量为50 mg时,单位吸附量达到最大值,为4.78 mg/g,符合拟一级吸附动力学模型,吸附过程主要为物理吸附。 再生纤维素负载叶酸微球(FCM)的具体负载率可达到98.8%,FCM有效提高了叶酸的储藏稳定性,5 d保留率为74.71%,相对于纯叶酸相比提高了34.7%。

关键词: 再生纤维素, 微球, 吸附, 亚甲基蓝, 叶酸

Abstract:

Regenerate cellulose microspheres (RCM) with different particle sizes are prepared by an emulsion method, a urea/NaOH solution of microcrystalline cellulose (MCC) was used as the dispersant phase. Both the adsorption behavior of RCM for methylene blue and its and the loading performance for folic acid (FA) is investigated. Scanning electron microscopy (SEM) results reveal that the prepared RCM has a rough surface structure and exhibits a certain degree of internal hollow structure. X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR) analyses indicate a transition in crystal type from type Ⅰ to type Ⅱ of cellulose. The particle size of RCM decreased as the rotation speed increased, diminishing by approximately 90.56% from 286 to 27 μm when the rotation speed rised from 400 to 1200 r/min. Additionally, decreasing V(MCC)∶V(LP) from 1∶3 to 1∶7 leads to a reduction in particle size by about 82.64%, decreasing from 311 to 54 μm. Furthermore, increasing emulsifier (w(span-80)) dosage results in the decrease of particle size. The particle size is around 276 μm at w(span-80) of 0.5%, which decreased to approximately 52 μm as w(span-80) increasing up to 2.5%. The adsorption of methylene blue reached equilibrium at 72 h. The maximum adsorption capacity occurs at pH=10 with an up take value of 6.11 mg/g. When the dosage of RCM is 50 mg, the maximum sorption capacity reaches 4.78 mg/g. The adsorption process is primarily surface-based according to the hypothetical first-order adsorption kinetics of RCM. For RCM loading FA microspheres on, a specific loading rate as high as 98.8% can be achieved. The application of regenerated cellulose-loaded FA microspheres effectively improves the storage stability of FA with a retention rate of 74.71% 5 days storage at 70 ℃, showing an increase of 34.7% compared to pure FA.

Key words: Regenerated cellulose, Microspheres, Adsorption, Methylene blue, Folic acid

中图分类号: