应用化学 ›› 2024, Vol. 41 ›› Issue (10): 1445-1456.DOI: 10.19894/j.issn.1000-0518.240073
梁兴毅1,2, 李亚2(), 荀京天2, 张巍巍1, 金长子1, 王锐1, 仇丹1,2, 何宇鹏1,3
收稿日期:
2024-03-06
接受日期:
2024-09-13
出版日期:
2024-10-01
发布日期:
2024-10-29
通讯作者:
李亚
基金资助:
Xing-Yi LIANG1,2, Ya LI2(), Jing-Tian XUN2, Wei-Wei ZHANG1, Chang-Zi JIN1, Rui WANG1, Dan QIU1,2, Yu-Peng HE1,3
Received:
2024-03-06
Accepted:
2024-09-13
Published:
2024-10-01
Online:
2024-10-29
Contact:
Ya LI
About author:
liya@nbut.edu.cnSupported by:
摘要:
以微晶纤维素(MCC)的尿素/NaOH溶液为分散相,通过乳液法制备了不同粒径的再生纤维素微球(RCM),考察了RCM对亚甲基蓝吸附行为,并探讨了再生纤维素微球对叶酸(FA)的负载性能。 扫描电子显微镜(SEM)结果表明,制备的RCM表面结构粗糙,内部呈一定的中空结构; X射线衍射(XRD)和傅里叶变换红外光谱(FT-IR)结果表明,RCM晶型由Ⅰ型变为Ⅱ型,微球的粒径随转速增大而减小,转速由400 r/min提高至转速1200 r/min时,粒径从286 μm降至27 μm,减小了约90.56%; 随水油体积比(V(MCC)∶V(LP))的减小而减小,V(MCC)∶V(LP)从1∶3降至1∶7时,粒径从311 μm降至54 μm,减小了约82.64%; 随乳化剂质量分数(w(span-80))的增加而减小,当w(span-80)为0.5%时,粒径约为276 μm,增大w(span-80)至2.5%时,粒径降至52 μm左右,减小了约81.16%。 RCM用于吸附亚甲基蓝时,72 h,吸附达到平衡; pH值为10时,吸附能力最强,吸附量为6.11 mg/g; 当RCM用量为50 mg时,单位吸附量达到最大值,为4.78 mg/g,符合拟一级吸附动力学模型,吸附过程主要为物理吸附。 再生纤维素负载叶酸微球(FCM)的具体负载率可达到98.8%,FCM有效提高了叶酸的储藏稳定性,5 d保留率为74.71%,相对于纯叶酸相比提高了34.7%。
中图分类号:
梁兴毅, 李亚, 荀京天, 张巍巍, 金长子, 王锐, 仇丹, 何宇鹏. 再生纤维素微球的制备及其吸附亚甲基蓝和叶酸负载[J]. 应用化学, 2024, 41(10): 1445-1456.
Xing-Yi LIANG, Ya LI, Jing-Tian XUN, Wei-Wei ZHANG, Chang-Zi JIN, Rui WANG, Dan QIU, Yu-Peng HE. Preparation of Regenerated Cellulose Microspheres and Their Adsorption of Methylene Blue and Loading of Folic Acid[J]. Chinese Journal of Applied Chemistry, 2024, 41(10): 1445-1456.
图1 不同V(MCC)∶V(LP)条件下制备的RCM与MCC的XRD曲线(转速800 r/min、w(span-80)=2%)
Fig.1 SEM images of RCM prepared with different V(MCC)∶V(LP) and XRD pattern of MCC (speed 800 r/min, w(span-80)=2%)
图3 转速400 (A)、600 (B)、800 (C)、1000 (D)和1200 r/min (E)下制备的RCM的SEM图及转速对微球粒径的影响(F)(V(MCC)∶V(LP)=1∶5、w(span-80)=2%)
Fig.3 SEM images of RCM prepared at speeds of 400 (A), 600 (B), 800 (C), 1000 (D) and 1200 r/min (E) and the effect of speed on particle size (F) (V(MCC)∶V(LP)=1∶5, w(span-80)=2%)
图4 V(MCC)∶V(LP)=1∶3 (A)、1∶4 (B)、1∶5 (C)、1∶6 (D)和1∶7 (E)条件下制备的再生纤维素微球的SEM图及V(MCC)∶V(LP)对微球粒径的影响(F) (转速为800 r/min、w(span-80)=2%)
Fig.4 SEM images of regenerated cellulose microspheres prepared at V(MCC)∶V(LP)=1∶3 (A), 1∶4 (B), 1∶5 (C), 1∶6 (D) and 1∶7 (E) and the effect of water-oil ratio on particle size (F) (speed 800 r/min, w(span-80)=2%)
图5 w(span-80)=0.5% (A)、1% (B)、1.5% (C)、2% (D)和2.5% (E)条件下制备的RCM的SEM图及span-80质量分数对微球粒径的影响(F) (转速为800 r/min、V(MCC)∶V(LP)=1∶5)
Fig.5 SEM images of RCM prepared at w(span-80) is 0.5% (A)、1% (B)、1.5% (C)、2% (D)、2.5% (E) and the effect of emulsifier dosage on particle size (F) (speed 800 r/min, V(MCC)∶V(LP)=1∶5)
图6 吸附时间(A)、pH值(B)、RCM用量(C)对RCM吸附MB吸附量的影响及吸附效果(D)
Fig.6 The influence of adsorption time (A), pH (B) and the amount of RCM (C), on the MB adsorption capacity of regenerated cellulose microspheres and the change of adsorption (D)
图7 RCM粒径对RCM吸附效果的影响(A); 拟一级动力学模型线性拟合曲线(B); 拟二级动力学模型线性拟合曲线(C)
Fig.7 Effect of RCM particle size on RCM (A); Linear fitting curves for the Pseudo-First-Order kinetic model (B); Linear fitting curves for the Pseudo-Second-Order kinetic model (C)
RCM particle size/μm | Dynamical model | Equation | k | qe | R2 |
---|---|---|---|---|---|
27 | pseudo-first-order model | lg(qe-qt )=0.5546-0.0265t | 0.060 96 | 3.585 9 | 0.916 2 |
pseudo-second order reaction | t/qt =810.3-13.92t | 0.239 4 | 0.071 8 | 0.428 6 | |
153 | pseudo-first-order model | lg(qe-qt )=0.7367-0.0242t | 0.055 78 | 5.453 8 | 0.838 4 |
pseudo-second order reaction | t/qt =814.91-14.15t | 0.246 2 | 0.070 6 | 0.438 1 | |
311 | pseudo-first-order model | lg(qe-qt )=0.4423-0.02391t | 0.055 06 | 2.769 1 | 0.835 5 |
pseudo-second order reaction | t/qt =98.14-1.055t | 0.111 3 | 0.947 9 | 0.367 4 |
表1 动力学模型方程以及相关参数
Table 1 Dynamic model equations and related parameters
RCM particle size/μm | Dynamical model | Equation | k | qe | R2 |
---|---|---|---|---|---|
27 | pseudo-first-order model | lg(qe-qt )=0.5546-0.0265t | 0.060 96 | 3.585 9 | 0.916 2 |
pseudo-second order reaction | t/qt =810.3-13.92t | 0.239 4 | 0.071 8 | 0.428 6 | |
153 | pseudo-first-order model | lg(qe-qt )=0.7367-0.0242t | 0.055 78 | 5.453 8 | 0.838 4 |
pseudo-second order reaction | t/qt =814.91-14.15t | 0.246 2 | 0.070 6 | 0.438 1 | |
311 | pseudo-first-order model | lg(qe-qt )=0.4423-0.02391t | 0.055 06 | 2.769 1 | 0.835 5 |
pseudo-second order reaction | t/qt =98.14-1.055t | 0.111 3 | 0.947 9 | 0.367 4 |
图10 FA负载率随时间变化图(A);纯FA与FCM中FA含量随时间变化(B)
Fig.10 Diagram of FA loading capacity varying with time (A); Changes in FA content with time in FA raw materials and FA loaded onto RCM samples (B)
1 | BOONSIRIWIT A, LEE M, KIM M, et al. Hydroxypropyl methylcellulose/microcrystalline cellulose biocomposite film incorporated with butterfly pea anthocyanin as a sustainable pH-responsive indicator for intelligent food-packaging applications[J]. Food Biosci, 2021, 44: 101392. |
2 | QIAO L Z, LI S S, LI Y L, et al. Fabrication of superporous cellulose beads via enhanced inner cross-linked linkages for high efficient adsorption of heavy metal ions[J]. J Cleaner Prod, 2020, 253: 120017. |
3 | GABRIELE L, GENNY P, ENRICO M, et al. Recent developments in chemical derivatization of microcrystalline cellulose (MCC): pre-treatments, functionalization, and applications[J]. Molecules, 2023, 28(5): 2009. |
4 | ALAVI M. Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications[J]. e-Polym, 2019, 19(1): 103-119. |
5 | SANTOS D, IOP G D, BIZZI C A, et al. A single step ultrasound-assisted nitrocellulose synthesis from microcrystalline cellulose[J]. Ultrason Sonochem, 2021, 72: 105453. |
6 | 陈玉竹, 刘思思, 张蒙蒙, 等. 基于抗菌性壳聚糖/羧甲基纤维素复合药物涂层的聚氨酯敷料[J]. 应用化学, 2023, 40(2): 252-260. |
CHEN Y Z, LIU S S, ZHANG M M, et al. Polyurethane dressing based on antibacterial chitosan/carboxymethyl cellulose composite drug coating[J]. Chin J Appl Chem, 2023, 40(2): 252-260. | |
7 | 姚秀清, 杨翔华. 稀盐酸预处理木质纤维素研究[J]. 辽宁石油化工大学学报, 2010, 30(4): 19-21, 37. |
YAO X H, YANG X H. Pretreatment process for lignocellulose by dilute hydrochloric acid[J]. J Liaoning Univ Petrol Chem Technol, 2010, 30(4): 19-21, 37. | |
8 | 曹从军, 马含笑, 侯成敏, 等. 乙基纤维素磁性复合材料对溶液中铜离子的吸附性能[J]. 应用化学, 2022, 39(6): 969-979. |
CAO C J, MA H X, HOU C M, et al. Adsorption of Cu(Ⅱ) from solution by modified magnetic ethyl cellulose[J]. Chin J Appl Chem, 2022, 39(6): 969-979. | |
9 | KUNDU C K, SONG L, HU Y. Micro crystalline cellulose aided surface modification and deposition of green polyelectrolytes for the improved hydrophilicity and flame retardancy of polyamide 66 fabric[J]. Int J Biol Macromol, 2024, 254: 127610. |
10 | LIN Q, GAO M, CHANG J, et al. Highly effective adsorption performance of carboxymethyl cellulose microspheres crosslinked with epichlorohydrin[J]. J Appl Polym Sci, 2017, 134(2): 44363. |
11 | CHANCHAL K K, LEI S, YUAN H. Micro crystalline cellulose aided surface modification and deposition of green polyelectrolytes for the improved hydrophilicity and flame retardancy of polyamide 66 fabric[J]. Int J Biol Macromol, 2023, 254(1): 127610. |
12 | ZHU C, RICHARDSON R M, POTTER K D, et al. High modulus regenerated cellulose fibers spun from a low molecular weight microcrystalline cellulose solution[J]. ACS Sustainable Chem Eng, 2016, 4(9): 4545-4553. |
13 | 董孝通, 王亚娟, 吴祖芳, 等. 乙醇再生微晶纤维素的分级及其结构表征[J]. 精细化工, 2023, 40(2): 343-348. |
DONG X T, WANG Y J, WU Z F, et al. Gradation and structural characterization of microcrystalline cellulose from ethanol regeneration[J]. Fine Chem, 2023, 40(2): 343-348. | |
14 | 李莉. 大麻落麻纤维素膜制备及性能[J]. 纤维素科学与技术, 2023, 31(2): 65-70. |
LI L. Fabrication and properties of hemp noil cellulose membraneose[J]. J Cellul Sci Technol, 2023, 31(2): 65-70. | |
15 | 薛菁雯, 王婕, 周绮雯, 等. 废旧涤棉再生纤维素膜的制备及其结构与性能研究[J]. 合成纤维, 2021, 50(9): 20-33. |
XUE Q W, WANG J, ZHOU Q W, et al. Study on the preparation, structure and characterization of regenerated cellulose films derived from waste polyester-cotton blended textile[J]. Synth Fiber China, 2021, 50(9): 20-33. | |
16 | 李芹, 张婉剑, 李逢雨, 等. 改性菠萝皮对水中亚甲基蓝的吸附性能研究[J]. 当代化工, 2024, 53(1): 25-31. |
LI Q, ZHANG W J, LI F Y, et al. Study on adsorption performance of modified pineapple peel for methylene blue in water[J]. Contemp Chem Ind, 2024, 53(1): 25-31. | |
17 | XU Y C, WANG Z X, CHENG X Q, et al. Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment[J]. Chem Eng J, 2016, 303: 555-564. |
18 | HUA J, MENG R, WANG T, et al. Highly porous cellulose microbeads and their adsorption for methylene blue[J]. Fibers Polym, 2019, 20: 794-803. |
19 | 丁琨, 江娜, 孙红军, 等. 厨余垃圾木质素改性处理亚甲基蓝废水性能研究[J]. 工业水处理, 2023, 43(8): 128-136. |
DING K, JIANG N, SUN H J, et al. Treatment of methylene blue wastewater by modified lignin from kitchen waste[J]. Ind Water Treat, 2023, 43(8): 128-136. | |
20 | KHALIL N A, ABDULLAH N S, RAHMAN A S A, et al. Microcrystalline cellulose (MCC) as an adsorbent in copper removal from aqueous solution[C]. IOP Conference Series: Materials Science and Engineering, 2021, 1195(1): 012022. |
21 | 唐子茜, 曾小峰, 商桑, 等. 叶酸强化食品研究进展[J]. 食品研究与开发, 2023, 44(22): 192-198. |
TANG Z Q, ZENG X F, SHANG S, et al. Research progress in folate fortified food[J]. Food Res Dev, 2023, 44(22): 192-198. | |
22 | CHEN T S, COOPER R G.Thermal destruction of folacin: effect of ascorbic acid, oxygen and temperature[J]. J Food Sci, 2010, 44(3): 713-716. |
23 | 孟冬玲, 刘彬, 邹琳, 等. 烟草秸秆纤维素纳米晶的制备及表征分析[J]. 云南大学学报(自然科学版), 2021, 43(2): 343-35. |
MENG D L, LIU B, ZOU L, et al. Preparation and characterization of cellulose nanocrystal from tobacco straw[J]. J Yunnan Univ (Nat Sci Ed), 2021, 43(2): 343-35. | |
24 | TESSEI K, SATOSHI I, YOSHITO A. The relationship between crystal structure and mechanical performance for fabrication of regenerated cellulose film through coagulation conditions[J]. Polym, 2021, 13(24): 4450. |
25 | KANG L M, XIU Y J, MING X Z, et al. Dissolution and functionalization of celluloses using 1,2,3-triazolium ionic liquid[J]. Carbohydr Polym Technol Appl, 2021, 25(2): 100109. |
26 | 孟佳成, 徐明聪, 刘守新, 等. 纤维素纳米晶/金纳米粒子复合虹彩薄膜的制备与表征[J]. 林产化学与工业, 2022, 42(3): 49-56. |
MENG J C, XU M C, LIU S X, et al. Preparation and characterization of cellulose nanocrystal/gold nanoparticle composite lridescent film[J]. Chem Ind For Prod, 2022, 42(3): 49-56. | |
27 | 马继玮, 姜泽明, 高鑫, 等. 离子液体中再生纤维素纤维的制备及表征[J]. 高分子材料科学与工程, 2019, 35(10): 176-190. |
MA J W, JIANG Z M, GAO X, et al. Preparation and characterization of regenerated cellulose fibers in lonic liquid[J]. Polym Mater Sci Eng, 2019, 35(10): 176-190. | |
28 | MARECHAL Y, CHANZY H. The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry[J]. J Mol Struct, 2000, 523(1/2/3): 183-196. |
29 | 李文浩. 再生纤维素结构调控及其光谱学研究[D]. 青岛: 青岛科技大学, 2020. |
LI W H. Study on the structural regulation and spectroscopy of regenerated cellulose[D]. Qingdao: Qingdao University Science Technology, 2020. | |
30 | 刘梦实. 多功能聚合物材料乙基纤维素微球的制备及其对染料污水的催化降解性能研究[D]. 兰州: 西北民族大学, 2022. |
LIU M S. Preparation of multifunctional polymeric material ethylcellulose microspheres and its catalytic degradation performance on dye effluent[D]. Lanzhou: Northwest Minzu University, 2022. | |
31 | LIU G, LI W, CHEN L L, et al. Molecular dynamics studies on the aggregating behaviors of cellulose molecules in NaOH/urea aqueous solution[J]. Colloids Surf A, 2020, 594: 124663. |
32 | VAN RUTH S M, KING C, GIANNOULI P. Influence of lipid fraction, emulsifier fraction, and mean particle diameter of oil-in-water emulsions on the release of 20 aroma compounds[J]. J Agric Food Chem, 2002, 50(8): 2365-2371. |
33 | 刘遵义, 曲静, 谭磊, 等. 氧化石墨烯/纤维素复合微球对亚甲基蓝的吸附性能研究[J]. 广东化工, 2022, 49(20): 1-3. |
LIU Z Y, QU J, TAN L, et al. Preparation of graphene oxide/cellulose composite microspheres and study on its adsorption properties for methylene blue[J]. Guangdong Chem Ind, 2022, 49(20): 1-3. | |
34 | HU H B, LIANG H P, LI H M, et al. Isolation, purification, characterization and antioxidant activity of polysaccharides from the stem barks of Acanthopanax leucorrhizus[J]. Carbohydr Polym, 2018, 196: 359-367. |
35 | 董琛琳, 刘娜, 王园, 等. 植物多糖的抗氧化损伤作用及其在动物生产中应用的研究进展[J]. 饲料研究, 2021, 44(14): 145-148. |
DONG C L, LIU N, WANG Y, et al. Research progress on antioxidant damage of plant polysaccharides and its application in animal production[J]. Feed Res, 2021, 44(14): 145-148. | |
36 | 徐高强. 单宁/多糖复合材料的构建及其吸附性能[D]. 郑州: 郑州大学, 2018, 1116: 12. |
XU G Q. Fabrication and adsorption properties of tannin/polysaccharide composites[D]. Zhengzhou: Zhengzhou University, 2018, 1116: 12. | |
37 | ZHANG M, WANG W, LV Z, et al. Effects of particle size on the adsorption behavior and antifouling performance of magnetic resins[J]. Environ Sci Pollut Res, 2023, 30(5): 11926-11935. |
38 | ALOSAIMI E H, ALSOHAIMI I H, DAHAN T E, et al. Adsorptive performance of tetracarboxylic acid-modified magnetic silica nanocomposite for recoverable efficient removal of toxic Cd(Ⅱ) from aqueous environment: equilibrium, isotherm, and reusability studies[J]. J Mol Liq, 2021, 334: 116069. |
39 | 孙广宇, 符秋伟, 郭文博, 等. 叶酸修饰的CdSe-TiO2对HL60细胞的光动力灭活作用[J]. 中国激光, 2018, 45(4): 279-286. |
SUN G Y, FU Q W, GUO W B, et al. Photodynamic inactivation of HL60 cells in vitro with folic acid-modified CdSe-TiO2[J]. Chin J Lasers, 2018, 45(4): 279-286. | |
40 | 胡仙超, 潘国祥, 陈聪亚, 等. 肠道靶向药物缓释功能叶酸插层水滑石的制备与结构表征[J]. 矿物学报, 2014, 34(1): 29-34. |
HU X C, PAN G X, CHEN C Y, et al. Preparation and characterization of folic acid intercalated layered double hydroxides with lntestinal targeting drug release properties[J]. Acta Mineralo Sin, 2014, 34(1): 29-34. |
[1] | 刘汉邦, 郝文月, 郭俊辉, 刘昶, 王凤来, 彭绍忠. 高硅LTA型分子筛的合成及应用研究进展[J]. 应用化学, 2024, 41(9): 1248-1258. |
[2] | 韩照徽, 孟良, 秦晨, 曹海亮, 侯莹. 多孔碳微球的可控构筑及其在钠离子电池中的应用[J]. 应用化学, 2024, 41(9): 1333-1341. |
[3] | 王兴刚, 秦静雯, 郑晓明, 颉林, 李薇. 改性火山石对水中氨氮的去除效果分析[J]. 应用化学, 2024, 41(8): 1193-1201. |
[4] | 任艳娇, 徐荣声, 王萍, 孙冬, 耿万东, 张海永. 乙二酸四乙酸二钠盐改性枸杞杆生物炭对亚甲基蓝吸附性能[J]. 应用化学, 2024, 41(7): 1035-1046. |
[5] | 张守村, 闫雪垠, 宋阳华, 李卓敏. CO2刺激响应球型水凝胶的制备及在蛋白质分离中的应用[J]. 应用化学, 2024, 41(6): 870-877. |
[6] | 王静, 李喜兰, 郭秀芬. 五氧化二铌光催化剂的制备及其光催化性能[J]. 应用化学, 2024, 41(3): 415-421. |
[7] | 张涛, 李思莹, 李俊乐, 邵思羽, 吴传栋, 凌梅, 吕东伟, 王威. 颗粒状碳酸氧镧去除水体中氟的性能[J]. 应用化学, 2024, 41(2): 297-307. |
[8] | 徐一, 林梦瑶, 宫晓群. 多色比色法在生物传感平台的研究进展[J]. 应用化学, 2024, 41(1): 3-20. |
[9] | 邢思阳, 于飞, 马杰. 电容去离子过渡金属基电极设计及应用研究进展[J]. 应用化学, 2023, 40(9): 1215-1232. |
[10] | 臧志飞, 梁杰, 习本军, 彭春雪, 刘渊, 王晨晔, 王朵. 草甘膦废液处理及资源化利用研究进展[J]. 应用化学, 2023, 40(9): 1233-1244. |
[11] | 王梦瑶, 高美珍, 石琪, 董晋湘. 基于甲苯模板合成的ZIF-93及其对1,3-丙二醇和2,3-丁二醇的吸附分离性能[J]. 应用化学, 2023, 40(9): 1302-1311. |
[12] | 郑建华, 管振萍, 刘国煜, 曹向禹, 郑顺姬, 关美艳. 过硫酸盐增强花状MnCo2O4可见光降解性能[J]. 应用化学, 2023, 40(7): 1034-1043. |
[13] | 元宁, 马洁, 张晋玲, 张建胜. 蒸气辅助合成PCN-6(M)双金属有机框架材料及其CH4和CO2吸附性能[J]. 应用化学, 2023, 40(6): 896-903. |
[14] | 郝晨丽, 丁庆伟, 贾世昌, 毛泱博, 王松柏, 马骏. 硫辛酸修饰钛酸纳米管吸附亚甲基蓝的性能[J]. 应用化学, 2023, 40(5): 749-757. |
[15] | 赵金丽, 于宗仁, 苏伯民. 墓葬壁画中蛋清胶结材料的热裂解-气质联用分析[J]. 应用化学, 2023, 40(4): 562-570. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||