应用化学 ›› 2024, Vol. 41 ›› Issue (8): 1154-1167.DOI: 10.19894/j.issn.1000-0518.240130
杨雪艳1, 史俊杰1, 周勇军2, 戴玉梅2, 李红周1()
收稿日期:
2024-04-18
接受日期:
2024-06-20
出版日期:
2024-08-01
发布日期:
2024-08-27
通讯作者:
李红周
基金资助:
Xue-Yan YANG1, Jun-Jie SHI1, Yong-Jun ZHOU2, Yu-Mei DAI2, Hong-Zhou LI1()
Received:
2024-04-18
Accepted:
2024-06-20
Published:
2024-08-01
Online:
2024-08-27
Contact:
Hong-Zhou LI
About author:
lihongzhou@fjnu.edu.cnSupported by:
摘要:
聚磷酸铵(APP)、9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、三聚氰胺聚磷酸盐(MPP)与镁铝型水滑石(MAH)插层,制得插层复合物(APP-MAH-6H,DOPO-MAH-6H,MPP-MAH-6H),复合物与环氧树脂(EP)通过搅拌共混热固化制备了EP/DOPO-MAH-6H、EP/APP-MAH-6H和EP/MPP-MAH-6H,并用锥形量热、垂直燃烧、极限氧指数、扫描电子显微镜(SEM)和拉曼光谱等表征手段对其结构和性能进行表征,探究了它们的阻燃性能。 实验结果表明: 与纯EP相比,EP/DOPO-MAH-6H、EP/APP-MAH-6H和EP/MPP-MAH-6H的热释放速率峰值由1079.2 kW/m2分别下降到481.3、445.7和385.8 kW/m2,极限氧指数(LOI)由25.1%分别提升到32.2%、32.9%和33.8%。 此外,在垂直燃烧UL-94测试中,EP/DOPO-MAH-6H、EP/APP-MAH-6H和EP/MPP-MAH-6H的等级均达到了V-0水平。 通过SEM可知,EP/DOPO-MAH-6H、EP/APP-MAH-6H的残炭形貌大而连续,EP/MPP-MAH-6H的残炭形貌整体致密且连续。 由拉曼光谱测试结果可知,3种EP复合材料形成了连续、优质的炭层,能有效隔离燃烧过程中氧气和热量向内部基质的传递。 因此,3种磷系插层复合物均能有效地提升环氧树脂的阻燃性。
中图分类号:
杨雪艳, 史俊杰, 周勇军, 戴玉梅, 李红周. 磷系阻燃剂插层镁铝水滑石增强环氧树脂的阻燃性能[J]. 应用化学, 2024, 41(8): 1154-1167.
Xue-Yan YANG, Jun-Jie SHI, Yong-Jun ZHOU, Yu-Mei DAI, Hong-Zhou LI. Flame Retardancy of Epoxy Resin Enhanced by Intercalation of Magnesium Aluminum Hydrotalcite with Phosphorous Flame Retardants[J]. Chinese Journal of Applied Chemistry, 2024, 41(8): 1154-1167.
Sample | w(EP)/% | w(DDM)/% | w(MAH)/% | w(DOPO)/% |
---|---|---|---|---|
EP | 80 | 20 | 0 | 0 |
EP/DOPO | 76 | 19 | 0 | 5 |
EP/DOPO+MAH | 75 | 19 | 1 | 5 |
EP/DOPO-MAH-6H | 75 | 19 | 1 | 5 |
表1 EP/DOPO/MAH阻燃复合材料配方表
Table 1 Formula of EP/DOPO/MAH flame retardant composite
Sample | w(EP)/% | w(DDM)/% | w(MAH)/% | w(DOPO)/% |
---|---|---|---|---|
EP | 80 | 20 | 0 | 0 |
EP/DOPO | 76 | 19 | 0 | 5 |
EP/DOPO+MAH | 75 | 19 | 1 | 5 |
EP/DOPO-MAH-6H | 75 | 19 | 1 | 5 |
图1 EP、EP/DOPO、EP/DOPO+MAH和EP/DOPO-MAH-6H的锥形量热测试A.HRR; B.THR; C.SPR; D.TSP; E.COPR; F.CO2PR
Fig.1 Cone calorimeter tests of EP, EP/DOPO, EP/DOPO+MAH and EP/DOPO-MAH-6H
Samples | TTI/s | pHRR/(kW·m-2) | THR/(MJ·m-2) | pSPR/(m2·s-1) | TSP/m2 | pCOPR/(g·s-1) | pCO2PR/(g·s-1) |
---|---|---|---|---|---|---|---|
EP | 97 | 1 079.2 | 75.1 | 0.25 | 24.9 | 0.038 | 0.73 |
EP/DOPO | 86 | 699.5 | 57.1 | 0.39 | 28.2 | 0.063 | 0.39 |
EP/DOPO+MAH | 85 | 585.8 | 62.5 | 0.27 | 25.3 | 0.026 | 0.31 |
EP/DOPO-MAH-6H | 70 | 481.3 | 42.3 | 0.38 | 26.6 | 0.054 | 0.25 |
表2 EP、EP/DOPO、EP/DOPO+MAH和EP/DOPO-MAH-6H的锥形量热数据
Table 2 The cone calorimeter test (CCT) data of EP, EP/DOPO, EP/DOPO+MAH and EP/DOPO-MAH-6H
Samples | TTI/s | pHRR/(kW·m-2) | THR/(MJ·m-2) | pSPR/(m2·s-1) | TSP/m2 | pCOPR/(g·s-1) | pCO2PR/(g·s-1) |
---|---|---|---|---|---|---|---|
EP | 97 | 1 079.2 | 75.1 | 0.25 | 24.9 | 0.038 | 0.73 |
EP/DOPO | 86 | 699.5 | 57.1 | 0.39 | 28.2 | 0.063 | 0.39 |
EP/DOPO+MAH | 85 | 585.8 | 62.5 | 0.27 | 25.3 | 0.026 | 0.31 |
EP/DOPO-MAH-6H | 70 | 481.3 | 42.3 | 0.38 | 26.6 | 0.054 | 0.25 |
图4 EP、EP/APP、EP/APP+MAH和EP/APP-MAH-6H的锥形量热测试A.HRR; B.THR; C.SPR; D.TSP; E.COPR; F.CO2PR
Fig.4 Cone calorimeter tests of EP, EP/APP, EP/APP+MAH and EP/APP-MAH-6H
Samples | TTI/s | pHRR/(kW·m-2) | THR/(MJ·m-2) | pSPR/(m2·s-1) | TSP/m2 | pCOPR/(g·s-1) | pCO2PR/(g·s-1) |
---|---|---|---|---|---|---|---|
EP | 97 | 1079.2 | 75.1 | 0.25 | 24.9 | 0.038 | 0.73 |
EP/APP | 92 | 593.1 | 32.8 | 0.34 | 12.3 | 0.042 | 0.34 |
EP/APP+MAH | 68 | 584.9 | 55.8 | 0.17 | 15.3 | 0.015 | 0.35 |
EP/APP-MAH-6H | 68 | 445.7 | 30.3 | 0.18 | 7.9 | 0.025 | 0.25 |
表3 EP、EP/APP、EP/APP+MAH和EP/APP-MAH-6H的锥形量热数据
Table 3 The CCT data of EP, EP/APP, EP/APP+MAH and EP/APP-MAH-6H
Samples | TTI/s | pHRR/(kW·m-2) | THR/(MJ·m-2) | pSPR/(m2·s-1) | TSP/m2 | pCOPR/(g·s-1) | pCO2PR/(g·s-1) |
---|---|---|---|---|---|---|---|
EP | 97 | 1079.2 | 75.1 | 0.25 | 24.9 | 0.038 | 0.73 |
EP/APP | 92 | 593.1 | 32.8 | 0.34 | 12.3 | 0.042 | 0.34 |
EP/APP+MAH | 68 | 584.9 | 55.8 | 0.17 | 15.3 | 0.015 | 0.35 |
EP/APP-MAH-6H | 68 | 445.7 | 30.3 | 0.18 | 7.9 | 0.025 | 0.25 |
图7 EP、EP/MPP、EP/MPP+MAH和EP/MPP-MAH-6H的锥形量热测试A.HRR; B.THR; C.SPR; D.TSP; E.COPR; F.CO2PR
Fig.7 Cone calorimeter tests of EP, EP/MPP, EP/MPP+MAH and EP/MPP-MAH-6H
Samples | TTI/s | pHRR/(kW·m-2) | THR/(MJ·m-2) | pSPR/(m2·s-1) | TSP/m2 | pCOPR/(g·s-1) | pCO2PR/(g·s-1) |
---|---|---|---|---|---|---|---|
EP | 97 | 1 079.2 | 75.1 | 0.25 | 24.9 | 0.038 | 0.73 |
EP/MPP | 84 | 600.6 | 58.5 | 0.17 | 13.4 | 0.019 | 0.35 |
EP/MPP+MAH | 67 | 412.3 | 73.7 | 0.14 | 17.1 | 0.011 | 0.22 |
EP/MPP-MAH-6H | 79 | 385.8 | 66.6 | 0.10 | 16.1 | 0.007 | 0.21 |
表4 EP、EP/MPP、EP/MPP+MAH和EP/MPP-MAH-6H的锥形量热数据
Table 4 The CCT data of EP, EP/MPP, EP/MPP+MAH and EP/MPP-MAH-6H
Samples | TTI/s | pHRR/(kW·m-2) | THR/(MJ·m-2) | pSPR/(m2·s-1) | TSP/m2 | pCOPR/(g·s-1) | pCO2PR/(g·s-1) |
---|---|---|---|---|---|---|---|
EP | 97 | 1 079.2 | 75.1 | 0.25 | 24.9 | 0.038 | 0.73 |
EP/MPP | 84 | 600.6 | 58.5 | 0.17 | 13.4 | 0.019 | 0.35 |
EP/MPP+MAH | 67 | 412.3 | 73.7 | 0.14 | 17.1 | 0.011 | 0.22 |
EP/MPP-MAH-6H | 79 | 385.8 | 66.6 | 0.10 | 16.1 | 0.007 | 0.21 |
图10 EP、EP/DOPO、EP/DOPO+MAH和EP/DOPO-MAH-6H残炭的数码照片(A)、扫描电镜图像(B)和拉曼光谱(C)
Fig.10 Digital photos (A), SEM images (B) and Raman spectra (C) depicting the char residues of EP, EP/DOPO, EP/DOPO+MAH and EP/DOPO-MAH-6H
图11 EP (A)、EP/DOPO (B)、EP/DOPO+MAH (C)和EP/DOPO-MAH-6H (D)的SEM-EDS元素图形
Fig.11 SEM-EDS element mapping of EP (A), EP/DOPO (B), EP/DOPO+MAH (C) and EP/DOPO-MAH-6H (D)
图12 EP、EP/APP、EP/APP+MAH和EP/APP-MAH-6H残炭的数码照片(A)、扫描电镜图像(B)和拉曼光谱(C)
Fig.12 Digital photos (A), SEM images (B) and Raman spectra (C) depicting the char residues of EP, EP/APP, EP/APP+MAH and EP/APP-MAH-6H
图13 EP(A)、EP/APP(B)、EP/APP+MAH(C)和EP/APP-MAH-6H(D)的SEM-EDS元素图像
Fig.13 The SEM-EDS element mapping of EP (A), EP/APP (B), EP/APP+MAH (C) and EP/APP-MAH-6H (D)
图14 EP、EP/MPP、EP/MPP+MAH和EP/MPP-MAH-6H残炭的数码照片(A)、扫描电子显微镜图像(B)和拉曼光谱(C)
Fig.14 Digital photos (A), SEM images (B) and Raman spectra (C) depicting the char residues of EP, EP/MPP, EP/MPP+MAH and EP/MPP-MAH-6H
图15 EP (A)、EP/MPP (B)、EP/MPP+MAH (C)和EP/MPP-MAH-6H (D)的SEM-EDS元素图像
Fig.15 The SEM-EDS element mapping of EP (A), EP/MPP (B), EP/MPP+MAH (C) and EP/MPP-MAH-6H (D)
1 | LI J H, CAO Q, ZHAO Y, et al. Bio-based flame retardant for manufacturing fire safety, strong yet tough versatile epoxy resin[J]. Compos Part B, 2024, 276: 111362. |
2 | JIAO D L, ZHAO H J, SIMA H, et al. Engineering flame retardant epoxy resins with strengthened mechanical property by using reactive catechol functionalized DOPO compounds[J]. Chem Eng J, 2024, 485: 149910. |
3 | RAO W H, ZHAO P, YU C B, et al. High strength, low flammability, and smoke suppression for epoxy thermoset enabled by a low-loading phosphorus-nitrogen-silicon compound[J]. Compos Part B, 2021, 211: 108640. |
4 | JIN W J, CHENG X W, MA S N, et al. Core-shell DOPO/caramel nano-polymer with desirable UV shielding and flame retardancy for polyamide 6 fabric[J]. Chem Eng J, 2024, 488: 151125. |
5 | DENG C, JI Y, ZHU M, et al. Preparation of organic-inorganic phosphorus-nitrogen-based flame retardants and their application to plywood[J]. Polymers, 2023, 15(14): 3112. |
6 | JIANG G, XIAO Y, QIAN Z, et al. A novel phosphorus-, nitrogen- and sulfur-containing macromolecule flame retardant for constructing high-performance epoxy resin composites[J]. Chem Eng J, 2023, 451: 137823. |
7 | TANG G, TAO Y, WU Q, et al. DOPO-based derivatives with different phosphorous oxidation states as highly efficient flame retardants for epoxy resins[J]. Polym Bull, 2024, 81(7): 6131-6148. |
8 | 林渊, 陈嘉炼, 李红周. 单宁酸/聚乙烯醇的阻燃性能[J]. 应用化学, 2023, 40(1): 69-78. |
LIN Y, CHEN J L, LI H Z. Flame retardant properties of tannic acid/poly(vinyl alcohol)[J]. Chin J Appl Chem, 2023, 40(1): 69-78. | |
9 | SHI Z H, LUO F B, LI H Z, et al. Synthesis of a graft-functionalized flame retardant based on DOPO and its application on the surface of terylene/cotton fabrics[J]. J Appl Polym Sci, 2024, 141(8): 54976. |
10 | 刘懿德, 陈嘉炼, 李红周, 等. 协效阻燃聚丙烯的阻燃性能[J]. 应用化学, 2019, 36(10) : 1165-1171. |
LIU Y D, CHEN J L, LI H Z, et al. Flame retardant properties of synergistic flame retardant polypropylene[J]. Chin J Appl Chem, 2019, 36(10): 1165-1171. | |
11 | REUTER J, GREINER L, KUKLA P, et al. Efficient flame retardant interplay of unsaturated polyester resin formulations based on ammonium polyphosphate[J]. Polym Degrad Stab, 2020, 178: 109134. |
12 | YUAN J M, LI H, XIAO L P, et al. Valorization of lignin into phenolic compounds via fast pyrolysis: impact of lignin structure[J]. Fuel, 2022, 319: 123758. |
13 | HOLDSWORTH A F, HORROCKS A R, KANDOLA B K. Novel metal complexes as potential synergists with phosphorus based flame retardants in polyamide 6.6[J]. Polym Degrad Stab, 2020, 179: 109220. |
14 | YIN X, LI L Q, PANG H S, et al. Halogen-free instinct flame-retardant waterborne polyurethanes: composition, performance, and application[J]. RSC Adv, 2022, 12(23): 14509-14520. |
15 | HU X, LI M X, YANG J, et al. In situ fabrication of melamine hydroxy ethylidene diphosphonate wrapped montmorillonite for reducing the fire hazards of epoxy resin[J]. Appl Clay Sci, 2021, 201: 105934. |
16 | WAN C, DUAN H J, ZHANG C H, et al. Synthesis of a multielement flame retardant and its application in epoxy resin[J]. ACS Appl Polym Mater, 2023, 5(3): 1775-1785. |
17 | 史俊杰, 史哲航, 李红周. 磷系阻燃剂插层镁铝型水滑石复合物的制备及其在热塑性聚氨酯中的阻燃应用[J]. 应用化学, 2023, 40(9): 1288-1301. |
SHI J J, SHI Z H, LI H Z. Preparation of magnesium aluminum-type hydrotalcite compounds intercalated with phosphorus flame retardants and their flame retardant application in thermoplastic polyurethane[J]. Chin J Appl Chem, 2023, 40(9): 1288-1301. | |
18 | YANG S, HUO S Q, WANG J, et al. A highly fire-safe and smoke-suppressive single-component epoxy resin with switchable curing temperature and rapid curing rate[J]. Compos Part B, 2021, 207: 108601. |
19 | YUAN G W, YANG B, CHEN Y H, et al. Synthesis of a novel multi-structure synergistic POSS-GO-DOPO ternary graft flame retardant and its application in polypropylene[J]. Compos Part A, 2019, 117: 345-356. |
20 | ZOU Y B, CUI W Q, CHEN D L, et al. In situ-generated heat-resistant hydrogen-bonded organic framework for remarkably improving both flame retardancy and mechanical properties of epoxy composites[J]. ACS Appl Mater Interfaces, 2023, 15(40): 47463-47474. |
21 | MOSEENKOV S I, KUZNETSOV V L, ZOLOTAREV N A, et al. Investigation of amorphous carbon in nanostructured carbon materials (a comparative study by TEM, XPS, Raman spectroscopy and XRD)[J]. Materials, 2023, 16(3): 1112. |
[1] | 师海岗, 郭艳妮. 甲基三氯硅烷改性三聚氰胺阻燃疏水泡沫的制备及其性能[J]. 应用化学, 2024, 41(4): 538-546. |
[2] | 卢紫微, 刘永福, 罗朝华, 孙鹏, 蒋俊. Cr3+掺杂的宽带近红外荧光粉研究进展[J]. 应用化学, 2024, 41(3): 328-339. |
[3] | 史俊杰, 史哲航, 李红周. 磷系阻燃剂插层镁铝型水滑石复合物的制备及其在热塑性聚氨酯中的阻燃应用[J]. 应用化学, 2023, 40(9): 1288-1301. |
[4] | 王梦瑶, 高美珍, 石琪, 董晋湘. 基于甲苯模板合成的ZIF-93及其对1,3-丙二醇和2,3-丁二醇的吸附分离性能[J]. 应用化学, 2023, 40(9): 1302-1311. |
[5] | 范鹏辉, 刘杰, 娄生辉, 唐涛. 环氧树脂中磷系阻燃剂协效体系的研究进展[J]. 应用化学, 2023, 40(5): 653-665. |
[6] | 李倩玉, 刘杰, 唐涛. 聚碳酸酯/短切碳纤维/二苯砜磺酸钾复合材料的阻燃性能[J]. 应用化学, 2023, 40(12): 1662-1671. |
[7] | 陈淑敏, 吕子全, 邹旋, 桂水清, 卢雪梅. 新冠常态下功能性口罩研究进展[J]. 应用化学, 2023, 40(11): 1504-1517. |
[8] | 韩志鹏, 秦冲, 周金向, 余明, 陈兆彬. 浇注型环氧树脂基耐高温中子屏蔽复合材料[J]. 应用化学, 2023, 40(10): 1420-1429. |
[9] | 林渊, 陈嘉炼, 李红周. 单宁酸/聚乙烯醇的阻燃性能[J]. 应用化学, 2023, 40(1): 69-78. |
[10] | 温景惠, 赵冰, 阚伟, 王丽艳, 孙立, 宋天舒, 宋波. 可区别铁离子荧光探针异构体的合成及其水样分析[J]. 应用化学, 2022, 39(5): 787-796. |
[11] | 唐永鑫, 聂立武. 环氧树脂掺量对发光树脂透水混凝土性能的影响[J]. 应用化学, 2022, 39(11): 1665-1671. |
[12] | 闫宇飞, 陈继, 李凯, 邹丹, 李德谦. 含氟硫酸介质中伯胺N1923对Ce(Ⅳ)的萃取[J]. 应用化学, 2022, 39(02): 307-314. |
[13] | 顾军渭, 程蓓, 杨旭彤. 液晶功能化氮化硼/液晶环氧树脂导热复合材料的制备[J]. 应用化学, 2021, 38(10): 1382-1388. |
[14] | 游歌云, 冯彬, 范方方, 杨昌杰, 梁聪. 含亚胺结构新型磷-氮协效阻燃化合物的合成及对环氧树脂的阻燃作用[J]. 应用化学, 2020, 37(2): 144-154. |
[15] | 刘西德, 周迪, 张兆顺. 1,2,3,9-四氢咔唑-4-酮生产废液处理及氯化锌回收利用[J]. 应用化学, 2020, 37(1): 117-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||