应用化学 ›› 2023, Vol. 40 ›› Issue (11): 1518-1530.DOI: 10.19894/j.issn.1000-0518.230158

• 综合评述 • 上一篇    下一篇

卤氧化铋基光催化剂的构建及其应用在能源转化领域的研究进展

尉枫1,2, 邢海东1, 修子媛1, 邢德峰2, 韩晓军1()   

  1. 1.哈尔滨工业大学化学与化工学院,城市水资源与水环境国家重点实验室,哈尔滨 150001
    2.哈尔滨工业大学环境学院,城市水资源与水环境国家重点实验室,哈尔滨 150001
  • 收稿日期:2023-05-30 接受日期:2023-10-16 出版日期:2023-11-01 发布日期:2023-12-01
  • 通讯作者: 韩晓军
  • 基金资助:
    黑龙江省自然科学基金重点项目(ZD2022B001);中国博士后科学基金(2021M701000);黑龙江省博士后基金(LBH-Z21146);城市水资源与水环境国家重点实验室开放课题(哈尔滨工业大学)(ES202213)

Fabrication of BiOX-Based Photocatalysts and Their Applications in Energy Conversion

Feng WEI1,2, Hai-Dong XING1, Zi-Yuan XIU1, De-Feng XING2, Xiao-Jun HAN1()   

  1. 1.State Key Laboratory of Urban Water Resource and Environment,School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,China
    2.State Key Laboratory of Urban Water Resource and Environment,School of Environment,Harbin Institute of Technology,Harbin 150001,China
  • Received:2023-05-30 Accepted:2023-10-16 Published:2023-11-01 Online:2023-12-01
  • Contact: Xiao-Jun HAN
  • About author:hanxiaojun@hit.edu.cn
  • Supported by:
    the National Natural Science Foundation of Heilongjiang Province(ZD2022B001);the China Postdoctoral Science Foundation(2021M701000);Heilongjiang Postdoctoral Foundation(LBH-Z21146);the Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology(ES202213)

摘要:

随着社会的飞速发展,传统石化资源的过度消耗不仅会导致能源危机,还会引起环境污染。近年来,研究人员致力于发展新型清洁、高效的碳中和能源。利用光催化技术将低密度的太阳能转化并储存为高密度的化学能有望解决能源短缺、环境污染等问题。在众多催化剂中,卤氧化铋(BiOX)具有特殊的层状结构、合适的带隙位置和良好的光响应性,是一种非常有潜力的光催化剂。然而,其本身的光催化效果无法满足生产生活的需要,因此对其改性研究逐渐成为研究热点。以卤氧化铋作为研究对象,从其结构特点出发,总结提升其光催化性能的改性方法,包括本征改性(形貌调控、元素掺杂和缺陷引入)及异质结构建等,并简述其在光解水制氢、CO2还原和合成氨等能源转化领域的研究进展,光催化剂的改性不仅能够改变光生载流子的传输方向、提高其分离效率,还能够为光反应提供有效活性位点,为提高光催化活性提供先决条件。最后,对BiOX基光催化剂发展过程中面临的挑战及发展方向进行展望。

关键词: 卤氧化铋, 光催化, 片层结构, 本征改性, 异质结构建, 能源转化

Abstract:

With the rapid development of our society, the excessive consumption of traditional petrochemical resource not only results in energy crisis, but also causes environmental pollution. In recent years, researchers are devoting themselves to the development of novel, clean and carbon-neutral energy with high efficiency. The energy conversion and storage from low-density solar energy to high-density chemical energy by photocatalysis technology show great potential to solve the aforementioned energy shortage and environmental pollution issues. Among all the photocatalysts, BiOX with typical layer structures, proper bandgap positions and excellent light response is considered as a promising photocatalyst. However, the photocatalytic performance based on BiOX is still far from satisfaction. Therefore, the development of its modification strategies is becoming a research hotspot. In this review, with BiOX as the research objective, the modification strategies based on its structural characteristics to promote the photocatalytic properties are summarized, including intrinsic modification (morphology regulation, element doping, and defect introduction) and heterojunction construction. The research progress of BiOX-based photocatalysts in energy conversion field (photocatalytic water splitting for H2 production, photocatalytic CO2 reduction and NH3 photosynthesis) is presented. The modification of BiOX can alter the migration direction of photocarriers and promote their separation. Meanwhile, the produced active sites during the modification are provided as the precondition to enhance the photocatalytic performance. Finally, the research challenge and development trends of BiOX-based photocatalysts are proposed.

Key words: BiOX, Photocatalysis, Layer structure, Intrinsic modification, Heterojunction construction, Energy conversion

中图分类号: