应用化学 ›› 2023, Vol. 40 ›› Issue (11): 1518-1530.DOI: 10.19894/j.issn.1000-0518.230158
尉枫1,2, 邢海东1, 修子媛1, 邢德峰2, 韩晓军1()
收稿日期:
2023-05-30
接受日期:
2023-10-16
出版日期:
2023-11-01
发布日期:
2023-12-01
通讯作者:
韩晓军
基金资助:
Feng WEI1,2, Hai-Dong XING1, Zi-Yuan XIU1, De-Feng XING2, Xiao-Jun HAN1()
Received:
2023-05-30
Accepted:
2023-10-16
Published:
2023-11-01
Online:
2023-12-01
Contact:
Xiao-Jun HAN
About author:
hanxiaojun@hit.edu.cnSupported by:
摘要:
随着社会的飞速发展,传统石化资源的过度消耗不仅会导致能源危机,还会引起环境污染。近年来,研究人员致力于发展新型清洁、高效的碳中和能源。利用光催化技术将低密度的太阳能转化并储存为高密度的化学能有望解决能源短缺、环境污染等问题。在众多催化剂中,卤氧化铋(BiOX)具有特殊的层状结构、合适的带隙位置和良好的光响应性,是一种非常有潜力的光催化剂。然而,其本身的光催化效果无法满足生产生活的需要,因此对其改性研究逐渐成为研究热点。以卤氧化铋作为研究对象,从其结构特点出发,总结提升其光催化性能的改性方法,包括本征改性(形貌调控、元素掺杂和缺陷引入)及异质结构建等,并简述其在光解水制氢、CO2还原和合成氨等能源转化领域的研究进展,光催化剂的改性不仅能够改变光生载流子的传输方向、提高其分离效率,还能够为光反应提供有效活性位点,为提高光催化活性提供先决条件。最后,对BiOX基光催化剂发展过程中面临的挑战及发展方向进行展望。
中图分类号:
尉枫, 邢海东, 修子媛, 邢德峰, 韩晓军. 卤氧化铋基光催化剂的构建及其应用在能源转化领域的研究进展[J]. 应用化学, 2023, 40(11): 1518-1530.
Feng WEI, Hai-Dong XING, Zi-Yuan XIU, De-Feng XING, Xiao-Jun HAN. Fabrication of BiOX-Based Photocatalysts and Their Applications in Energy Conversion[J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1518-1530.
Photocatalyst | Preparation method | Modification strategy | Reaction condition (Light resource) | Photocatalytic performance | Ref. |
---|---|---|---|---|---|
BiOBr nanosheet arrays | Solvothermal method | Morphology regulation | 500 W Xenon lamp (λ≥400 nm) | Removal of ciprofloxacin hydrochloride (91.4%) | [ |
Hollow porous BiOCl microspheres | Spray solution combustion method | Morphology regulation | 150 W Halogen lamp (λ≥400 nm) | Removal of rhodamine B (98%) | [ |
Ultrathin 2D BiOX NSs | Two-phase method | Morphology regulation | 300 W Xenon lamp (λ≥420 nm) | Removal of rhodamine B (96%) Removal of methyl orange (39%) O2 evolution (445.6 μmol/(g·h)) | [ |
Ni-doped BiOCl | Solvothermal method | Transition metal ion doping | Visible light (λ>420 nm) | Removal of rhodamine B (97%) | [ |
B-doped Bi3O4Cl NSs | Solvothermal method | Non-metal ion doping | 300 W Xenon lamp (λ>420 nm) | Removal of bisphenol A (~94%) Removal of ciprofloxacin (92.3%) | [ |
Ultrathin BiOX NSs (X=Cl, Br) | Laser irradiation | O vacancy defect | 500 W Xenon lamp (λ≥420 nm) | Removal of rhodamine B (BiOCl: 93.6%; BiOBr: 92.1%) | [ |
BiOX (X=F, Cl, Br, I) | Hydrothermal method and chemical precipitation method | O vacancy defect | 300 W Xenon lamp | Reduction of CO2 (CO: 21.6 μmol/(g·h); CH4 1.2 μmol/(g·h)) | [ |
Bi-Nb-BiOCl | Solvothermal method | O vacancy defect | 300 W Xenon lamp (λ≥420 nm) | Removal of rhodamine B (97%) Removal of tetracycline (~70%) | [ |
p-BiOBr/n-TiO2 nanofibers | Electrospinning and solvothermal method | p-n heterojunction | 50 W Mercury lamp | Removal of rhodamine B (89%) Removal of methyl orange (~95%) | [ |
BiOX(X=Cl, Br)-Au-CdS | Solvothermal method and photodeposition | All-solid-state Z-scheme | 300 W Xenon lamp (AM 1.5 filter) | Removal of rhodamine B (100%) | [ |
BiOBr/BiOIO3 | Solvothermal method | Direct Z-scheme | 300 W Xenon lamp (λ≥420 nm) | Removal of mercury (90.25%) | [ |
BiOX (X=Cl, Br, I) | Chemical precipitation method | Selective facet | 300 W Xenon lamp (λ≥400 nm) | Removal of rhodamine B (95%) | [ |
表1 基于BiOX催化剂的不同改性策略的制备方法及光催化活性总结
Table 1 Summary of typical modification strategies based on BiOX and photocatalytic activities
Photocatalyst | Preparation method | Modification strategy | Reaction condition (Light resource) | Photocatalytic performance | Ref. |
---|---|---|---|---|---|
BiOBr nanosheet arrays | Solvothermal method | Morphology regulation | 500 W Xenon lamp (λ≥400 nm) | Removal of ciprofloxacin hydrochloride (91.4%) | [ |
Hollow porous BiOCl microspheres | Spray solution combustion method | Morphology regulation | 150 W Halogen lamp (λ≥400 nm) | Removal of rhodamine B (98%) | [ |
Ultrathin 2D BiOX NSs | Two-phase method | Morphology regulation | 300 W Xenon lamp (λ≥420 nm) | Removal of rhodamine B (96%) Removal of methyl orange (39%) O2 evolution (445.6 μmol/(g·h)) | [ |
Ni-doped BiOCl | Solvothermal method | Transition metal ion doping | Visible light (λ>420 nm) | Removal of rhodamine B (97%) | [ |
B-doped Bi3O4Cl NSs | Solvothermal method | Non-metal ion doping | 300 W Xenon lamp (λ>420 nm) | Removal of bisphenol A (~94%) Removal of ciprofloxacin (92.3%) | [ |
Ultrathin BiOX NSs (X=Cl, Br) | Laser irradiation | O vacancy defect | 500 W Xenon lamp (λ≥420 nm) | Removal of rhodamine B (BiOCl: 93.6%; BiOBr: 92.1%) | [ |
BiOX (X=F, Cl, Br, I) | Hydrothermal method and chemical precipitation method | O vacancy defect | 300 W Xenon lamp | Reduction of CO2 (CO: 21.6 μmol/(g·h); CH4 1.2 μmol/(g·h)) | [ |
Bi-Nb-BiOCl | Solvothermal method | O vacancy defect | 300 W Xenon lamp (λ≥420 nm) | Removal of rhodamine B (97%) Removal of tetracycline (~70%) | [ |
p-BiOBr/n-TiO2 nanofibers | Electrospinning and solvothermal method | p-n heterojunction | 50 W Mercury lamp | Removal of rhodamine B (89%) Removal of methyl orange (~95%) | [ |
BiOX(X=Cl, Br)-Au-CdS | Solvothermal method and photodeposition | All-solid-state Z-scheme | 300 W Xenon lamp (AM 1.5 filter) | Removal of rhodamine B (100%) | [ |
BiOBr/BiOIO3 | Solvothermal method | Direct Z-scheme | 300 W Xenon lamp (λ≥420 nm) | Removal of mercury (90.25%) | [ |
BiOX (X=Cl, Br, I) | Chemical precipitation method | Selective facet | 300 W Xenon lamp (λ≥400 nm) | Removal of rhodamine B (95%) | [ |
图6 PVP配位的BiOBr纳米片表面以氧空位为CO2吸附位点,通过配体-金属间电荷转移提高BiOBr上电荷密度来实现CO2的还原[80]Fig.?6 Schematic of PVP-conjugated BiOBr nanosheets with OVs as adsorption sites for CO2 and electron transfer between PVP and BiOBr to improve the electron density for CO2 reduction[80]
Application | Photocatalyst | Modification strategy | Functions | Light source | Product yield rate/(μmol·h-1·g-1) and selectivity | Ref. |
---|---|---|---|---|---|---|
Water splitting for H2 production | BiOBr-(001) BiOBr-(010) | High exposure of crystal face | Enhancing spatial separation of electron and hole pairs | 300 W Xenon lamp | H2: 16.12 (100%) H2: 8.69 (100%) | [ |
BiOBr/C | Schottky junction/OVs | Enhancing spatial separation of electron and hole pairs | 150 W Xenon lamp (λ≥420 nm) | H2: 2 850 (100%) | [ | |
BiOCl/CuFe2O4 | Z-scheme heterojunction | Enhancing spatial separation of electron and hole pairs/Improving reducibility of photo-induced electrons | 250 W Xenon lamp | H2: 740 (100%) | [ | |
CO2 reduction | Ultrathin BiOCl nanosheets | Morphology regulation | Regulating conduction band/Improving migration of photo-induced carriers | 300 W Xenon lamp | CO: 21.36 (~100%) CH4: trace | [ |
BiOCl atomic layers | Exposing VDWG/Forming defect of VDWG-Bi-VOs-Bi | Enhancing separation of electron and hole pairs/Promoting activation of CO2, cleavage of *COOH and desorption of *CO | 300 W Xenon lamp (λ≥400 nm) | CO: 188.2 (≥97.4%) H2: <5 (<2.6%) | [ | |
PVP-BiOBr | PVP coordination/OVs defect | Increasing local electron density/Promoting adsorption and activation of CO2 | 300 W Xenon lamp (200 mW/cm2) | CO: 263.2 (98.8%) CH4: 3.3 (1.2%) | [ | |
BiOCl/Bi2WO6 | Ⅱ-type heterojunction | Promoting CO2 and CHO* adsorption and enhancing migration and separation of carriers by built-in electric field | 300 W Xenon lamp (AM 1.5 G, 100 mW/cm2) | CH4: 6.63 (82.9%) CO+H2: 1.37 (17.1%) | [ | |
NH3 synthesis | BiOCl NSs-Fe | Fe doping/OVs by light irradiation | Promoting adsorption and activation of N2 | 300 W Xenon lamp | NH3: 1 022 (100%) | [ |
Bi5O7Br-40 | Regulating Bi contents/morphology | Promoting activation of N2 by OVs/Increasing specific surface area | 300 W Xenon lamp (200~800 nm) | NH3: 12 720 (100%) | [ | |
Bi2Sn2O7/BiOBr | S-scheme heterojunction | Enhancing migration and separation of photo-induced carriers to maintain the high reducibility of conduction band | 300 W Xenon lamp | NH3: 459.04 (100%) | [ |
表2 BiOX基光催化剂的改性方法、作用及其在能源转化领域应用汇总
Table 2 Summary of modifications and their functions of BiOX-based photocatalysts and the applications in energy conversion
Application | Photocatalyst | Modification strategy | Functions | Light source | Product yield rate/(μmol·h-1·g-1) and selectivity | Ref. |
---|---|---|---|---|---|---|
Water splitting for H2 production | BiOBr-(001) BiOBr-(010) | High exposure of crystal face | Enhancing spatial separation of electron and hole pairs | 300 W Xenon lamp | H2: 16.12 (100%) H2: 8.69 (100%) | [ |
BiOBr/C | Schottky junction/OVs | Enhancing spatial separation of electron and hole pairs | 150 W Xenon lamp (λ≥420 nm) | H2: 2 850 (100%) | [ | |
BiOCl/CuFe2O4 | Z-scheme heterojunction | Enhancing spatial separation of electron and hole pairs/Improving reducibility of photo-induced electrons | 250 W Xenon lamp | H2: 740 (100%) | [ | |
CO2 reduction | Ultrathin BiOCl nanosheets | Morphology regulation | Regulating conduction band/Improving migration of photo-induced carriers | 300 W Xenon lamp | CO: 21.36 (~100%) CH4: trace | [ |
BiOCl atomic layers | Exposing VDWG/Forming defect of VDWG-Bi-VOs-Bi | Enhancing separation of electron and hole pairs/Promoting activation of CO2, cleavage of *COOH and desorption of *CO | 300 W Xenon lamp (λ≥400 nm) | CO: 188.2 (≥97.4%) H2: <5 (<2.6%) | [ | |
PVP-BiOBr | PVP coordination/OVs defect | Increasing local electron density/Promoting adsorption and activation of CO2 | 300 W Xenon lamp (200 mW/cm2) | CO: 263.2 (98.8%) CH4: 3.3 (1.2%) | [ | |
BiOCl/Bi2WO6 | Ⅱ-type heterojunction | Promoting CO2 and CHO* adsorption and enhancing migration and separation of carriers by built-in electric field | 300 W Xenon lamp (AM 1.5 G, 100 mW/cm2) | CH4: 6.63 (82.9%) CO+H2: 1.37 (17.1%) | [ | |
NH3 synthesis | BiOCl NSs-Fe | Fe doping/OVs by light irradiation | Promoting adsorption and activation of N2 | 300 W Xenon lamp | NH3: 1 022 (100%) | [ |
Bi5O7Br-40 | Regulating Bi contents/morphology | Promoting activation of N2 by OVs/Increasing specific surface area | 300 W Xenon lamp (200~800 nm) | NH3: 12 720 (100%) | [ | |
Bi2Sn2O7/BiOBr | S-scheme heterojunction | Enhancing migration and separation of photo-induced carriers to maintain the high reducibility of conduction band | 300 W Xenon lamp | NH3: 459.04 (100%) | [ |
1 | ZHANG P, LOU X W. Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion[J]. Adv Mater, 2019, 31(29): 1900281. |
2 | HOU H, ZHANG X. Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications[J]. Chem Eng J, 2020, 395: 125030. |
3 | BIE C B, YU H G, CHENG B, et al. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst[J]. Adv Mater, 2021, 33(9): 2003521. |
4 | ZHANG L, ZHANG J, YU H, et al. Emerging S-scheme photocatalyst[J]. Adv Mater, 2022, 34(11): 2107668. |
5 | ZHAN Y, ZHANG S, SHI R, et al. Two-dimensional photocatalyst design: a critical review of recent experimental and computational advances[J]. Mater Today, 2020, 34: 78-91. |
6 | LI Y, GAO C, LONG R, et al. Photocatalyst design based on two-dimensional materials[J]. Mater Today Chem, 2019, 11: 197-216. |
7 | RAIZADA P, SONI V, KUMAR A, et al. Surface defect engineering of metal oxides photocatalyst for energy application and water treatment[J]. J Materiomics, 2021, 7(2): 388-418. |
8 | AHAMD I, SHUKRULLAH S, NAZ M, et al. Designing and modification of bismuth oxyhalides BiOX (X=Cl, Br and I) photocatalysts for improved photocatalytic performance[J]. J Ind Eng Chem, 2022, 105: 1-33. |
9 | SHARMA K, DUTTA V, SHARMA S, et al. Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review[J]. J Ind Eng Chem, 2019, 78: 1-20. |
10 | WEI X, AKBAR M U, RAZA A, et al. A review on bismuth oxyhalide based materials for photocatalysis[J]. Nanoscale Adv, 2021, 3(12): 3353-3372. |
11 | GANOSE A M, CUFF M, BUTLER K T, et al. Interplay of orbital and relativistic effects in bismuth oxyhalides: BiOF, BiOCl, BiOBr and BiOI[J]. Chem Mater, 2016, 28(7): 1980-1984. |
12 | LIUI X, DUAN X, BAO T, et al. High-performance photocatalytic decomposition of PFOA by BiOX/TiO2 heterojunctions: self-induced inner electric fields and band alignment[J]. J Hazard Mater, 2022, 430: 128195. |
13 | ZHAO L, ZHANG X, FAN C, et al. First-principles study on the structural, electronic and optical properties of BiOX (X=Cl, Br, I) crystals[J]. Physica B, 2012, 407(17): 3364-3370. |
14 | GARG S, YADAV M, CHANDRA A, et al. A review on BiOX (X=Cl, Br and I) nano-/microstructures for their photocatalytic applications[J]. J Nanosci Nanotechnol, 2019, 19(1): 280-294. |
15 | GAO P, YANG Y, YIN Z, et al. A critical review on bismuth oxyhalide based photocatalysis for pharmaceutical active compounds degradation: modifications, reactive sites, and challenges[J]. J Hazard Mater, 2021, 412: 125186. |
16 | RAZA A, QIN Z, AHMAD S O A, et al. Recent advances in structural tailoring of BiOX-based 2D composites for solar energy harvesting[J]. J Environ Chem Eng, 2021, 9(6): 106569. |
17 | WANG Z, CHEN M, HUANG D, et al. Multiply structural optimized strategies for bismuth oxyhalide photocatalysis and their environmental application[J]. Chem Eng J, 2019, 374: 1025-1045. |
18 | DI J, XIA J, LI H, et al. Bismuth oxyhalide layered materials for energy and environmental applications[J]. Nano Energy, 2017, 41: 172-192. |
19 | WU X, ZHANG K, ZHANG G, et al. Facile preparation of BiOX (X=Cl, Br, I) nanoparticles and up-conversion phosphors/BiOBr composites for efficient degradation of NO gas: oxygen vacancy effect and near infrared light responsive mechanism[J]. Chem Eng J, 2017, 325: 59-70. |
20 | ZHAO S, DOU Z, LIU Y, et al. Ionic liquid-assisted synthesis of defect-rich BiOI with controllable structure and high surface area for excellent visible-light photocatalytic activity[J]. Appl Organomet Chem, 2020, 34(10): e5816. |
21 | DENG Z, CHEN D, PENG B, et al. From bulk metal Bi to two-dimensional well-crystallized BiOX (X=Cl, Br) micro-and nanostructures: synthesis and characterization[J]. Cryst Growth Des, 2008, 8(8): 2995-3003. |
22 | LIU Y, HU Z, YU J C. Fe enhanced visible-light-driven nitrogen fixation on BiOBr nanosheets[J]. Chem Mater, 2020, 32(4): 1488-1494. |
23 | WILCZEWSKA P, BIELICKA-GIELDONi A, SZXZODROWSKI K, et al. Morphology regulation mechanism and enhancement of photocatalytic performance of BiOX (X=Cl, Br, I) via mannitol-assisted synthesis[J]. Catalysts, 2021, 11(3): 312. |
24 | ALLAIN A, KANG J, BANERJEE K, et al. Electrical contacts to two-dimensional semiconductors[J]. Nat Mater, 2015, 14(12): 1195-1205. |
25 | GUAN G, YE E, YOU M, et al. Hybridized 2D nanomaterials toward highly efficient photocatalysis for degrading pollutants: current status and future perspectives[J]. Small, 2020, 16(19): 1907087. |
26 | LING Y, DAI Y, ZHOU J. Fabrication and high photoelectrocatalytic activity of scaly BiOBr nanosheet arrays[J]. J Colloid Interface Sci, 2020, 578: 326-337. |
27 | YANG Z, SHANG Z, LIU F, et al. Hollow porous BiOCl microspheres assembled with single layer of nanocrystals: spray solution combustion synthesis and the enhanced photocatalytic properties[J]. Nanotechnology, 2021, 32(20): 205602. |
28 | WANG Z, CHU Z, DONG C, et al. Ultrathin BiOX (X=Cl, Br, I) nanosheets with exposed {001} facets for photocatalysis[J]. ACS Appl Nano Mater, 2020, 3(2): 1981-1991. |
29 | ZHONG X, ZHANG K X, WU D, et al. Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation[J]. Chem Eng J, 2020, 383: 123148. |
30 | QU J, DU Y, JI P, et al. Cu co-doped BiOBr with improved photocatalytic ability of pollutants degradation[J]. J Alloy Compd, 2021, 881: 160391. |
31 | GUAN C, HOU T, NIE W, et al. Sn4+ doping enhanced inner electric field for photocatalytic performance promotion of BiOCl based nanoflowers[J]. Appl Surf Sci, 2022, 604: 154498. |
32 | WANG C Y, ZENG Q, WANG L X, et al. Visible-light-driven Ag-doped BiOBr nanoplates with an enhanced photocatalytic performance for the degradation of bisphenol A[J]. Nanomaterials, 2022, 12(11): 1909. |
33 | LIU J, LI D, LI R, et al. PtO/Pt4+-BiOCl with enhanced photocatalytic activity: insight into the defect-filled mechanism[J]. Chem Eng J, 2020, 395: 123954. |
34 | CUI J, TAO S, YANG X, et al. Facile construction of nickel-doped hierarchical BiOCl architectures for enhanced visible-light-driven photocatalytic activities[J]. Mater Res Bull, 2021, 138: 111208. |
35 | ZENG L, ZHE F, WANG Y, et al. Preparation of interstitial carbon doped BiOI for enhanced performance in photocatalytic nitrogen fixation and methyl orange degradation[J]. J Colloid Interface Sci, 2019, 539: 563-574. |
36 | MAIMAITIZI H, ABULIZI A, KADEER K, et al. In situ synthesis of Pt and N co-doped hollow hierarchical BiOCl microsphere as an efficient photocatalyst for organic pollutant degradation and photocatalytic CO2 reduction[J]. Appl Surf Sci, 2020, 502: 144083. |
37 | ZHANG Q, HOU T, SHEN H, et al. Optical and photocatalytic properties of S doped BiOCl nanosheets with tunable exposed {001} facets and band gap[J]. Appl Surf Sci, 2022, 600: 154020. |
38 | DONG Y, XU D, WANG Q, et al. Tailoring the electronic structure of ultrathin 2D Bi3O4Cl sheets by boron doping for enhanced visible light environmental remediation[J]. Appl Surf Sci, 2021, 542: 148521. |
39 | LIU Y, HU Z, JIMMY C Y. Photocatalytic degradation of ibuprofen on S-doped BiOBr[J]. Chemosphere, 2021, 278: 130376. |
40 | TAO S, SUN S, ZHAO T, et al. One-pot construction of Ta-doped BiOCl/Bi heterostructures toward simultaneously promoting visible light harvesting and charge separation for highly enhanced photocatalytic activity[J]. Appl Surf Sci, 2021, 543: 148798. |
41 | FENG J, HUANG H, FANG T, et al. Defect engineering in semiconductors: manipulating nonstoichiometric defects and understanding their impact in oxynitrides for solar energy conversion[J]. Adv Funct Mater, 2019, 29(11): 1808389. |
42 | JIANG J, LING C, XU T, et al. Defect engineering for modulating the trap states in 2D photoconductors[J]. Adv Mater, 2018, 30(40): 1804332. |
43 | BAI S, ZHANG N, GAO C, et al. Defect engineering in photocatalytic materials[J]. Nano Energy, 2018, 53: 296-336. |
44 | VINOTH S, ONG W J, PANDIKUMAR A, et al. Defect engineering of BiOX (X=Cl, Br, I) based photocatalysts for energy and environmental applications: current progress and future perspectives[J]. Coordin Chem Rev, 2022, 464: 214541. |
45 | AHAMD I, SHUKRULLAH S, YASIN N M, et al. Designing and modification of bismuth oxyhalides BiOX (X=Cl, Br and I) photocatalysts for improved photocatalytic performance[J]. J Ind Eng Chem, 2022, 105: 1-33. |
46 | SHAO C, MALIK A S, HAN J, et al. Oxygen vacancy engineering with flame heating approach towards enhanced photoelectrochemical water oxidation on WO3 photoanode[J]. Nano Energy, 2020, 77: 105190. |
47 | WANG Z, LIN R, HUO Y, et al. Formation, detection, and function of oxygen vacancy in metal oxides for solar energy conversion[J]. Adv Funct Mater, 2022, 32(7): 2109503. |
48 | KIM E, HONG J, HONG S, et al. Improvement of oxide removal rate in chemical mechanical polishing by forming oxygen vacancy in ceria abrasives via ultraviolet irradiation[J]. Mater Chem Phys, 2021, 273: 124967. |
49 | KARMAKAR A, KARTHICK K, SANKAR S S, et al. Oxygen vacancy enriched NiMoO4 nanorods via microwave heating: a promising highly stable electrocatalyst for total water splitting[J]. J Mater Chem A, 2021, 9(19): 11691-11704. |
50 | LI H, LI J, AI Z, et al. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives[J]. Angew Chem Int Ed, 2018, 57(1): 122-138. |
51 | GUO J, LI X, LIANG J, et al. Fabrication and regulation of vacancy-mediated bismuth oxyhalide towards photocatalytic application: development status and tendency[J]. Coordin Chem Rev, 2021, 443: 214033. |
52 | YUAN Q, WEI S, HU T, et al. Defect-modified ultrathin BiOX (X=Cl, Br) nanosheets via a top-down approach with effective visible-light photocatalytic degradation[J]. J Phys Chem C, 2021, 125(34): 18630-18639. |
53 | REN X, GAO M, ZHANG Y, et al. Photocatalytic reduction of CO2 on BiOX: effect of halogen element type and surface oxygen vacancy mediated mechanism[J]. Appl Catal B: Environ, 2020, 274: 119063. |
54 | YU H, GE D, WANG Y, et al. Facile synthesis of Bi-modified Nb-doped oxygen defective BiOCl microflowers with enhanced visible-light-driven photocatalytic performance[J]. J Alloy Compd, 2019, 786: 155-162. |
55 | LOW J, YU J, JARONNIEC M, et al. Heterojunction photocatalysts[J]. Adv Mater, 2017, 29(20): 1601694. |
56 | WANG Z, LIN Z, SHEN S, et al. Advances in designing heterojunction photocatalytic materials[J]. Chin J Catal, 2021, 42(5): 710-730. |
57 | SEIDHARAN K, SHENOY S, KUMAR S G, et al. Advanced two-dimensional heterojunction photocatalysts of stoichiometric and non-stoichiometric bismuth oxyhalides with graphitic carbon nitride for sustainable energy and environmental applications[J]. Catalysts, 2021, 11(4): 426. |
58 | SU Q, LI Y, HU R, et al. Heterojunction photocatalysts based on 2D materials: the role of configuration[J]. Adv Sustainable Syst, 2020, 4(9): 2000130. |
59 | WANG K, ZHANG Y, LIU L, et al. BiOBr nanosheets-decorated TiO2 nanofibers as hierarchical p-n heterojunctions photocatalysts for pollutant degradation[J]. J Mater Sci, 2019, 54(11): 8426-8435. |
60 | ZHANG M, YIN H F, YAO J C, et al. All-solid-state Z-scheme BiOX (Cl, Br)-Au-CdS heterostructure: photocatalytic activity and degradation pathway[J]. Colloid Surf A, 2020, 602: 124778. |
61 | JIA T, WU J, SONG J, et al. In situ self-growing 3D hierarchical BiOBr/BiOIO3 Z-scheme heterojunction with rich oxygen vacancies and iodine ions as carriers transfer dual-channels for enhanced photocatalytic activity[J]. Chem Eng J, 2020, 396: 125258. |
62 | JIN X, YE L, XIE H, et al. Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis[J]. Coordin Chem Rev, 2017, 349: 84-101. |
63 | MENG J, DUAN Y, JING S, et al. Facet junction of BiOBr nanosheets boosting spatial charge separation for CO2 photoreduction[J]. Nano Energy, 2022, 92: 106671. |
64 | YANG J, XIE T, ZHU Q, et al. Boosting the photocatalytic activity of BiOX under solar light via selective crystal facet growth[J]. J Mater Chem C, 2020, 8(7): 2579-2588. |
65 | RAN L, HOU J, CAO S, et al. Defect engineering of photocatalysts for solar energy conversion[J]. Solar RRL, 2020, 4(4): 1900487. |
66 | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
67 | NG K H, LAI S Y, CHENG C K, et al. Photocatalytic water splitting for solving energy crisis: myth, fact or busted?[J]. Chem Eng J, 2021, 417: 128847. |
68 | ZHOU P, NAVID I A, MA Y J, et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting[J]. Nature, 2023, 613: 66-70. |
69 | LIU Y, YANG B, HE H, et al. Bismuth-based complex oxides for photocatalytic applications in environmental remediation and water splitting: a review[J]. Sci Total Environ, 2022, 804: 150215. |
70 | SHI M, LI G, LI J, et al. Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting[J]. Angew Chem, 2020, 132(16): 6652-6657. |
71 | ZHENG X, FENG L, DOU Y, et al. High carrier separation efficiency in morphology-controlled BiOBr/C schottky junctions for photocatalytic overall water splitting[J]. ACS Nano, 2021, 15(8): 13209-13219. |
72 | BERA S, GHOSH S, MAIYALAGAN T, et al. Band edge engineering of BiOX/CuFe2O4 heterostructures for efficient water splitting[J]. ACS Appl Energy Mater, 2022, 5(3): 3821-3833. |
73 | RAN J, JARONIEC M, QAIO S Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities[J]. Adv Mater, 2018, 30(7): 1704649. |
74 | LI J, WEI F, XIU Z, et al. Direct Z-scheme charge transfer of Bi2WO6/InVO4 interface for efficient photocatalytic CO2 reduction[J]. Chem Eng J, 2022, 446: 137129. |
75 | WAGNER A, SAHM C D, REISNER E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction[J]. Nat Catal, 2020, 3(10): 775-786. |
76 | LI R, LUAN Q, DONG C, et al. Light-facilitated structure reconstruction on self-optimized photocatalyst TiO2@BiOCl for selectively efficient conversion of CO2 to CH4[J]. Appl Catal B: Environ, 2021, 286: 119832. |
77 | FU J, JIANG K, QIU X, et al. Product selectivity of photocatalytic CO2 reduction reactions[J]. Mater Today, 2020, 32: 222-243. |
78 | ZHANG Y, XU Z, WANG Q, et al. Unveiling the activity origin of ultrathin BiOCl nanosheets for photocatalytic CO2 reduction[J]. Appl Catal B: Environ, 2021, 299: 120679. |
79 | SHI Y, LI J, MAO C, et al. Van Der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis[J]. Nat Commun, 2021, 12(1): 5923. |
80 | WANG Q, JIN Y, ZHANG Y, et al. Polyvinyl pyrrolidone-coordinated ultrathin bismuth oxybromide nanosheets for boosting photoreduction of carbon dioxide via ligand-to-metal charge transfer[J]. J Colloid Interface Sci, 2022, 606: 1087-1100. |
81 | ZHAO X, XIA Y, WANG X, et al. Promoted photocarriers separation in atomically thin BiOCl/Bi2WO6 heterostructure for solar-driven photocatalytic CO2 reduction[J]. Chem Eng J, 2022, 449: 137874. |
82 | LI J D, ZHENG M, WEI F, et al. Fe doped InVO4 nanosheets with rich surface oxygen vacancies for enhanced electrochemical nitrogen fixation[J]. Chem Eng J, 2022, 431: 133383. |
83 | SHI R, ZHAO Y, WATERHOUSE G I, et al. Defect engineering in photocatalytic nitrogen fixation[J]. ACS Catal, 2019, 9(11): 9739-9750. |
84 | ZHANG N, LI L, SHAO Q, et al. Fe-doped BiOCl nanosheets with light-switchable oxygen vacancies for photocatalytic nitrogen fixation[J]. ACS Appl Energy Mater, 2019, 2(12): 8394-8398. |
85 | LI P, ZHOU Z, WANG Q, et al. Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies[J]. J Am Chem Soc, 2020, 142(28): 12430-12439. |
86 | ZHANG Y, DI J, ZHU X, et al. Chemical bonding interface in Bi2Sn2O7/BiOBr S-scheme heterojunction triggering efficient N2 photofixation[J]. Appl Catal B:Environ, 2023, 323: 122148. |
[1] | 雷学博, 刘慧景, 丁赫宇, 申国栋, 孙润军. 用于降解印染废水中有机污染物的光催化剂的研究进展[J]. 应用化学, 2023, 40(5): 681-696. |
[2] | 刘盛杰, 叶永杰, 刘银怡, 林淑满, 谢浩源, 刘文婷, 许伟钦. 基于泡沫铜的多孔碳均匀负载Cu3P纳米颗粒的制备及其光催化降解染料性能[J]. 应用化学, 2022, 39(7): 1090-1097. |
[3] | 张晓丽, 彭玉美, 王庆伟, 秦利霞, 刘肖霞, 康诗钊, 李向清. 纳米Ag/TiO2纳米管阵列基底构建及表面增强拉曼散射光谱检测与降解盐酸四环素[J]. 应用化学, 2022, 39(7): 1147-1156. |
[4] | 徐一鑫, 王爽, 全静, 高婉婷, 宋天群, 杨梅. 二硫化钼量子点/还原氧化石墨烯复合材料的制备及其光催化降解有机染料、四环素和Cr(VI)[J]. 应用化学, 2022, 39(5): 769-778. |
[5] | 商林杰, 刘江, 兰亚乾. 共价有机框架材料用于光/电催化CO2还原的研究进展[J]. 应用化学, 2022, 39(4): 559-584. |
[6] | 王佳赫, 刘大勇, 刘伟, 王林, 董彪. 纳米TiO2光催化抗菌应用的研究进展[J]. 应用化学, 2022, 39(4): 629-646. |
[7] | 逯慧, 李江, 王丽华, 诸颖, 陈静. 原子级精确的币金属纳米团簇在光催化应用方面的研究进展[J]. 应用化学, 2022, 39(11): 1652-1664. |
[8] | 叶祥志, 邓云水, 刘源, 周咏柳, 贺建雄, 熊春荣. 玻璃球负载非晶态有机钛聚合物提高光催化还原CO2的转换频率[J]. 应用化学, 2022, 39(10): 1554-1563. |
[9] | 周玉凤, 周川巍, 胡桐泽, 段展鹏, 王颢潼, 石淑云. Fe/V-Sb2O3复合材料的构筑及光催化降解医药废水[J]. 应用化学, 2022, 39(10): 1572-1578. |
[10] | 刘旭, 李杨可欣, 杜黎, 于健, 王佳程, 耿阳, 韩广, 孙宽, 李猛. 水凝胶的制备及仿生设计在能源领域应用的研究进展[J]. 应用化学, 2022, 39(1): 35-54. |
[11] | 杨玉萍, 徐绍红, 马国扬, 焦黎明, 孙莉萍, 夏然. 5-氘代利巴韦林衍生物的合成[J]. 应用化学, 2021, 38(8): 911-916. |
[12] | 贺全宝, 胡征, 葛明. BiOX(X=Cl,Br,I)复合光催化材料降解水体中抗生素研究进展[J]. 应用化学, 2021, 38(7): 754-766. |
[13] | 赵星鹏, 王娅乔, 高生旺, 朱建超王国英, 夏训峰, 王洪良, 王书平. BiOBr/CeO2复合材料的制备及光催化降解磺胺异恶唑[J]. 应用化学, 2021, 38(4): 422-430. |
[14] | 唐飞, 杜多勤, 谭芸妃, 秦莉晓. 正六棱型MoO3-x微米柱光催化剂的制备及性能[J]. 应用化学, 2021, 38(1): 92-98. |
[15] | 张春华, 赵晓波, 李跃军, 孙大伟. (BiO)2CO3-Bi-TiO2复合纳米纤维制备及其光催化降解抗生素[J]. 应用化学, 2021, 38(1): 99-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||