应用化学 ›› 2023, Vol. 40 ›› Issue (10): 1420-1429.DOI: 10.19894/j.issn.1000-0518.230164
收稿日期:
2023-06-05
接受日期:
2023-08-22
出版日期:
2023-10-01
发布日期:
2023-10-13
通讯作者:
陈兆彬
Zhi-Peng HAN1, Chong QIN2, Jin-Xiang ZHOU2, Ming YU3, Zhao-Bin CHEN2()
Received:
2023-06-05
Accepted:
2023-08-22
Published:
2023-10-01
Online:
2023-10-13
Contact:
Zhao-Bin CHEN
About author:
zhaobinchen@ciac.ac.cn摘要:
提出“自驱动梯度升温”概念,研制了一种耐高温,且综合性能优异的环氧树脂基中子屏蔽复合材料。通过反应动力学研究,确定基体为混合多官能度缩水甘油胺环氧树脂和混合改性酚醛胺固化剂,基体中高反应活性树脂体系固化反应放热触发低反应活性树脂体系的固化反应,实现了室温浇注工艺条件下,高性能环氧树脂无外部热源输入即可固化成型,制备耐高温中子屏蔽材料的目的。在基体材料分子结构中刚/柔性基团的匹配、体系复杂相态下的传热和功能填料的筛选等几方面研究基础上,最终得到了玻璃化转变温度(Tg)>150 ℃、负荷热变形温度>150 ℃、快中子屏蔽系数(252Cf,40 mm)>2.5、热中子屏蔽率(252Cf,40 mm)>99.98%、物理机械性能优异的中子屏蔽复合材料。该材料在服役工况苛刻的核辐射二次屏蔽领域具有现实应用场景。
中图分类号:
韩志鹏, 秦冲, 周金向, 余明, 陈兆彬. 浇注型环氧树脂基耐高温中子屏蔽复合材料[J]. 应用化学, 2023, 40(10): 1420-1429.
Zhi-Peng HAN, Chong QIN, Jin-Xiang ZHOU, Ming YU, Zhao-Bin CHEN. High Temperature Resistant Epoxy Resin-Based Composites by Casting Process for Neutron Shielding[J]. Chinese Journal of Applied Chemistry, 2023, 40(10): 1420-1429.
Heating rate β/(K·min-1) | Initial temperature Ti/℃ | Peak temperature Tp/℃ | Termination temperature Tf/℃ |
---|---|---|---|
5 | 54.95 | 95.67 | 154.32 |
10 | 58.72 | 105.95 | 162.13 |
15 | 65.23 | 116.80 | 166.49 |
20 | 72.16 | 121.15 | 173.22 |
表1 不同升温速率下基体树脂DSC测试热力学参数
Table 1 Thermodynamic parameters of solidification of resins at different heating rates by DSC analysis
Heating rate β/(K·min-1) | Initial temperature Ti/℃ | Peak temperature Tp/℃ | Termination temperature Tf/℃ |
---|---|---|---|
5 | 54.95 | 95.67 | 154.32 |
10 | 58.72 | 105.95 | 162.13 |
15 | 65.23 | 116.80 | 166.49 |
20 | 72.16 | 121.15 | 173.22 |
图4 (A) BN粉末SEM图; (B)不同BN粉末对材料导热系数的影响图
Fig.4 (A) SEM images of BN(a.CGF12; b.CG20; c.4F; d.QS30); (B) Effects of different BN powders on thermal conductivity of matrix materials
Packing | Packing shape | A | |||||
---|---|---|---|---|---|---|---|
B4C | Block | 0.25 | 10 | 0.227 | 1.5 | 0.637 | 0.432 |
B4C | Block | 0.35 | 10 | 0.227 | 1.5 | 0.637 | 0.600 |
w(BN)∶w(B4C)=20%∶15% | Flake+Block | 0.35 | 63.6 | 0.227 | 2.4 | 0.639 | 0.756 |
w(BN)∶w(B4C)=23%∶12% | Flake+Block | 0.35 | 69.1 | 0.227 | 2.5 | 0.639 | 0.775 |
表2 复合材料导热系数模拟计算结果
Table 2 Simulation results of thermal conductivity of composite materials
Packing | Packing shape | A | |||||
---|---|---|---|---|---|---|---|
B4C | Block | 0.25 | 10 | 0.227 | 1.5 | 0.637 | 0.432 |
B4C | Block | 0.35 | 10 | 0.227 | 1.5 | 0.637 | 0.600 |
w(BN)∶w(B4C)=20%∶15% | Flake+Block | 0.35 | 63.6 | 0.227 | 2.4 | 0.639 | 0.756 |
w(BN)∶w(B4C)=23%∶12% | Flake+Block | 0.35 | 69.1 | 0.227 | 2.5 | 0.639 | 0.775 |
图6 低导热(A)和高导热(B)体系固化过程中内外部温度随时间变化曲线。插图为相应的样品实物
Fig.6 Variations in external and internal temperatures with time during curing process for composites with low (A) and high (B) thermal conductivities. Inserts are the corresponding pictures of prepared samples
No. | Performance | Test data | Standard |
---|---|---|---|
1 | Glass transition temperature/℃ | 161 | GBT 19466.2-2004 |
2 | Temperature of deflection under load/℃ | 159.1 | GB/T 1634.1-2004 |
3 | Thermal decomposition temperature/℃ | 325 | GB/T 27761-2011 |
4 | Weightlessness rate at 180 ℃ for 15 days/% | 0.55 | GB/T 7141-2008 |
5 | Thermal conductivity/(W·K-1·m-1) | 0.918 | GB/T 22588-2008 |
6 | Compressive strength/MPa | 102 | GB/T 1041-2008 |
7 | Modulus of compression/GPa | 4.5 | GB/T 1041-2008 |
8 | Tensile strength/MPa | 50 | GB/T 1040.1-2006 |
9 | Tensile modulus/GPa | 5.1 | GB/T 1040.1-2006 |
10 | Bending strength/MPa | 78 | GB/T 9341-2008 |
11 | Impact strength/MPa | 11.67 | GB/T 1843-2008 |
12 | Density/(g·cm-3) | 1.458 | GB/T 1033.1-2008 |
13 | Fast neutron shielding factor (252Cf,40 mm)/% | 2.56 | — |
14 | Thermal neutron shielding rate (252Cf,40 mm)/% | 99.98 | — |
表3 复合材料的性能测试数据
Table 3 Properties of prepared composite
No. | Performance | Test data | Standard |
---|---|---|---|
1 | Glass transition temperature/℃ | 161 | GBT 19466.2-2004 |
2 | Temperature of deflection under load/℃ | 159.1 | GB/T 1634.1-2004 |
3 | Thermal decomposition temperature/℃ | 325 | GB/T 27761-2011 |
4 | Weightlessness rate at 180 ℃ for 15 days/% | 0.55 | GB/T 7141-2008 |
5 | Thermal conductivity/(W·K-1·m-1) | 0.918 | GB/T 22588-2008 |
6 | Compressive strength/MPa | 102 | GB/T 1041-2008 |
7 | Modulus of compression/GPa | 4.5 | GB/T 1041-2008 |
8 | Tensile strength/MPa | 50 | GB/T 1040.1-2006 |
9 | Tensile modulus/GPa | 5.1 | GB/T 1040.1-2006 |
10 | Bending strength/MPa | 78 | GB/T 9341-2008 |
11 | Impact strength/MPa | 11.67 | GB/T 1843-2008 |
12 | Density/(g·cm-3) | 1.458 | GB/T 1033.1-2008 |
13 | Fast neutron shielding factor (252Cf,40 mm)/% | 2.56 | — |
14 | Thermal neutron shielding rate (252Cf,40 mm)/% | 99.98 | — |
1 | 蔡永成, 刘学宇, 蔡永军, 等. 核辐射危害及核辐射屏蔽材料研究现状[J]. 粉末冶金工业, 2023, 33(2): 96-102. |
CAI Y C, LIU X Y, CAI Y J, et al. Radiation hazard and research status of radiation shielding materials[J]. Powder Metall Ind, 2023, 33(2): 96-102. | |
2 | 付春亮. 辐射防护材料的研究[J]. 科技资讯, 2022, 20(13): 58-60. |
FU C L. Research on radiation protection materials[J]. Sci Technol Inf, 2022, 20(13): 58-60. | |
3 | 陈秋雨, 张城皓, 曹可, 等. 高分子基辐射防护材料研究进展[J]. 材料导报, 2022, 36(S1): 541-544. |
CHEN Q Y, ZHANG C H, CAO K, et al. Research progress of polymer based radiation protection materials[J]. Mater Rev, 2022, 36(S1): 541-544. | |
4 | 李哲夫, 薛向欣. 含硼矿物及环氧树脂复合材料的中子屏蔽性能[J]. 原子能科学技术, 2011, 45(2): 223-229. |
LI Z F, XUE X X. Neutron shielding properties of boron containing mineral and epoxy resin composites[J]. At Energy Sci Technol, 2011, 45(2): 223-229. | |
5 | 邵世鹏, 王玉杰, 董涵. 室温固化环氧树脂浇注料的研究[J]. 黑龙江科技信息, 2015(16): 115. |
SHAO S P, WANG Y J, DONG H. Study on room temperature curing epoxy resin castable[J]. Heilongjiang Sci Technol Inf, 2015(16) : 115. | |
6 | 于平, 张国亮, 张连红, 等. 室温快固化环氧树脂固化剂研究进展[J]. 当代化工, 2012, 41(2): 173-176. |
YU P, ZHANG G L, ZHANG L H, et al. Research progress in room temperature fast-curing epoxy resin curing agents[J]. Contemp Chem Ind, 2012, 41(2): 173-176. | |
7 | 张春玲, 那辉, 牟建新, 等. 含联苯结构的环氧树脂固化性能的研究[J]. 高等学校化学学报, 2004(9): 1756-1758. |
ZHANG C L, NA H, MOU J X, et al. Study on curing property of epoxy resin containing biphenyl structure [J]. Chem J China Univ, 2004(9): 1756-1758. | |
8 | 翁秋燕, 刘灿培, 陈明锋, 等. 含氨基苯并噻唑刚性链节环氧树脂材料的制备及热稳定性研究[J]. 福建师范大学学报(自然科学版), 2015, 31(4): 63-67. |
WENG Q Y, LIU C P, CHEN M F, et al. Preparation and thermal stability of epoxy resin with aminobenzothiazole[J]. J Fujian Norm Univ (Nat Sci Ed), 2015, 31(4): 63-67. | |
9 | 毛建, 王钧, 段华军. 多官能度环氧树脂对共混体系耐热性能的影响[J]. 热固性树脂, 2006(1): 16-17, 20. |
MAO J, WANG J, DUAN H J. Effect of multi-functional epoxy resin on heat resistance of blend system[J]. Thermosetting Resin, 2006(1): 16-17, 20. | |
10 | 李栓, 杜宇, 张宝艳. 苯并噁嗪树脂改性环氧树脂胶黏剂的阻燃性能[J]. 合成树脂及塑料, 2023, 40(2): 23-26. |
LI S, DU Y, ZHANG B Y. Flame retardation of epoxy resin adhesive modified by benzoxazine resin[J]. Synth Resins Plast, 2023, 40(2): 23-26. | |
11 | 刘宁, 侯晓, 刘津生, 等. 不同固化剂复配的低温固化环氧树脂体系性能[J]. 固体火箭技术, 2022, 45(2): 274-280. |
LIU N, HOU X, LIU J S, et al. Properties of low temperature curing epoxy resin system with different curing agents[J]. Solid Rocket Technol, 2022, 45(2): 274-280. | |
12 | 贾彩霞, 梁禄忠, 王乾, 等. 非活性稀释剂对常温固化环氧树脂性能的影响[J]. 高分子材料科学与工程, 2019, 35(1): 59-63. |
JIA C X, LIANG L Z, WANG Q, et al. Effect of inactive diluent on properties of epoxy resin cured at room temperature[J]. Polym Mater Sci Eng, 2019, 35(1): 59-63. | |
13 | 冉德龙, 谢建军, 黄凯, 等. 室温固化的耐高温环氧胶粘剂[J]. 材料研究进展, 2011: 284-286. |
RAN D L, XIE J J, HUANG K, et al. High temperature resistance of epoxy adhesives under the room-temperature curing[J]. Adv Mater Res, 2011: 284-286. | |
14 | 王珂, 虞鑫海, 徐永芬. 耐高温环氧树脂胶粘剂的研究进展[J]. 粘接, 2013, 34(2): 63-65. |
WANG K, YU X H, XU Y F. Research progress of epoxy resin adhesives resistant to high temperature[J]. Adhesion, 2013, 34(2): 63-65. | |
15 | 孙曼灵. 环氧树脂应用原理与技术[M]. 北京: 机械工业出版社, 2002: 4-5. |
SUN M L. Application of the principles and techniques of epoxy resin[M]. Beijing: China Machine Press, 2002: 4-5. | |
16 | 张庆思. 环氧树脂固化反应表观活化能的研究[J]. 涂料工业, 1996(3): 1-3, 45. |
ZHANG Q S. Study on the apparent activation energy of epoxy resin curing reaction[J]. Coat Ind, 1996(3): 1-3, 45. | |
17 | 杨帆, 粟俊华, 胡亚坤, 等. 环氧封端聚苯醚/环氧树脂共混体系的固化动力学研究[J]. 塑料科技, 2023, 51(4): 54-58. |
YANG F, SU J H, HU Y K, et al. Study on curing kinetics of epoxy terminated polyphenylene ether/epoxy resin blends[J]. Plast Sci Technol, 2023, 51(4): 54-58. | |
18 | 路易斯, 尼尔森. 颗粒填充复合材料的动态力学性能[J]. 高分子应用科学杂志, 1970, 14(6): 1449-1471. |
LEWIS T B, NIELSEN L E. Dynamic mechanical properties of particulate-filled composites[J]. J Appl Polym Sci, 1970, 14(6): 1449-1471. | |
19 | 郝鲁阳, 温变英, 张宜鹏. 填料形状对聚酰胺6基复合材料导热性能的影响[J]. 中国塑料, 2017, 31(11): 35-40. |
HAO L Y, WEN B Y, ZHANG Y P. Effect of filler shape on thermal conductivity of polyamide[J]. China Plast, 2017, 31(11): 35-40. | |
20 | 冯伟, 李伟. 填充型导热绝缘聚合物基复合材料的研究进展[J]. 炭素, 2017(3): 5-11. |
FENG W, LI W. Research progress of filled thermal insulation polymer matrix composites [J]. Carbon, 2017(3): 5-11. | |
21 | 马传国, 容敏智, 章明秋. 聚合物基复合材料导热模型及其应用[J]. 宇航材料工艺, 2003(3): 1-4. |
MA C G, RONG M Z, ZHANG M Q. Thermal conductivity model of polymer matrix composites and its application[J]. Aerosp Mater Technol, 2003(3): 1-4. | |
22 | 吕勇, 罗世永, 许文才. 导热绝缘高分子复合材料中填料的研究进展[J]. 北京印刷学院学报, 2008, 16(2): 76-78. |
LV Y, LUO S Y, XU W C. Research progress of fillers in heat conduction and insulationv polymer composites[J]. J Beijing Inst Print Technol, 2008, 16(2): 76-78. | |
23 | 陶文铨. 传热学[M]. 第五版. 北京: 高等教育出版社, 2019: 5-15. |
TAO W Q. Heat transfer[M]. 5nd ed. Beijing: Higher Education Press, 2019: 5-15. |
[1] | 范鹏辉, 刘杰, 娄生辉, 唐涛. 环氧树脂中磷系阻燃剂协效体系的研究进展[J]. 应用化学, 2023, 40(5): 653-665. |
[2] | 唐永鑫, 聂立武. 环氧树脂掺量对发光树脂透水混凝土性能的影响[J]. 应用化学, 2022, 39(11): 1665-1671. |
[3] | 顾军渭, 程蓓, 杨旭彤. 液晶功能化氮化硼/液晶环氧树脂导热复合材料的制备[J]. 应用化学, 2021, 38(10): 1382-1388. |
[4] | 游歌云, 冯彬, 范方方, 杨昌杰, 梁聪. 含亚胺结构新型磷-氮协效阻燃化合物的合成及对环氧树脂的阻燃作用[J]. 应用化学, 2020, 37(2): 144-154. |
[5] | 侯成敏,李娜,董海涛,寇艳萍. 含氟环氧树脂杂化纳米二氧化硅超疏水材料的制备与性能[J]. 应用化学, 2019, 36(7): 798-806. |
[6] | 张丽丽, 丁慧敏, 张继堂, 许东华, 李志锋. 碳纳米管改性环氧树脂的导热和阻燃性能[J]. 应用化学, 2017, 34(1): 46-53. |
[7] | 陈明锋, 卢庆新, 刘灿培, 林金火. 含芳基噻唑基团环氧树脂材料的制备及热性能[J]. 应用化学, 2016, 33(3): 293-298. |
[8] | 张欢欢, 许东华, 管东波, 姚卫国, 石彤非. 不同温度下环氧树脂代木搪塑模具的固化过程[J]. 应用化学, 2016, 33(3): 299-306. |
[9] | 胡三明, 魏巍, 杨天博, 郑春柏, 郑昌梅, 邓鹏飏. 一种新型室温固化、耐高温环氧树脂体系及其性能[J]. 应用化学, 2016, 33(2): 175-180. |
[10] | 白天, 郭安儒, 李瑞杰, 刘畅, 肖德海. 稀释剂对耐高温环氧树脂性能的影响[J]. 应用化学, 2016, 33(12): 1401-1407. |
[11] | 马玉芹, 郑昌梅, 杨天博, 魏巍, 柳美华, 郑春柏, 邓鹏飏, 高莹. 1-己基-3-甲基咪唑四氯化铁盐固化环氧树脂E-51的反应特性[J]. 应用化学, 2015, 32(6): 636-640. |
[12] | 李丹, 苏晓声, 张驰. 二维红外相关光谱在双氰胺固化环氧树脂体系中的应用[J]. 应用化学, 2015, 32(11): 1275-1282. |
[13] | 姜治伟, 薛俭, 杜中辉, 唐涛, 刘文彬. 偶氮复合发泡剂对交联聚氯乙烯泡沫结构和性能的影响[J]. 应用化学, 2014, 31(11): 1248-1254. |
[14] | 刘长岭, 杨宁, 张泽宇. 电子封装用Al2O3改性环氧树脂及其性能[J]. 应用化学, 2013, 30(12): 1417-1422. |
[15] | 王一明, 刘杰, 吴广峰, 唐涛. 亚临界水介质回收酸酐固化环氧树脂/碳纤维复合材料[J]. 应用化学, 2013, 30(06): 643-647. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||