1 |
LIU G, ZHANG X, WANG D. Tailoring crystallization: towards high-performance poly(lactic acid)[J]. Adv Mater, 2014, 26(40): 6905-6911.
|
2 |
NAGARAJAN V, MOHANTY A K, MISRA M. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance[J]. ACS Sustainable Chem Eng, 2016, 4(6): 2899-2916.
|
3 |
OTHMAN N, XU C, MEHRKHODAVANDI P, et al. Thermorheological and mechanical behavior of polylactide and its enantiomeric diblock copolymers and blends[J]. Polymer, 2012, 53(12): 2443-2452.
|
4 |
YASUNIWA M, TSUBAKIHARA S, IURA K, et al. Crystallization behavior of poly(L-lactic acid)[J]. Polymer, 2006, 47(21): 7554-7563.
|
5 |
WANG Z, MA Z, LI L B. Flow-induced crystallization of polymers: molecular and thermodynamic considerations[J]. Macromolecules, 2016, 49(5): 1505-1517.
|
6 |
CUI K P, MA Z, TIAN N, et al. Multiscale and multistep ordering of flow-induced nucleation of polymers[J]. Chen Rev, 2018, 118(4): 1840-1886.
|
7 |
KUMARASWAMY G, ISSAIAN A M, KORNFIELD J A J M. Shear-enhanced crystallization in isotactic polypropylene. 1. correspondence between in situ rheo-optics and ex situ structure determination[J]. Macromolecules, 1999, 32(22): 7537-7547.
|
8 |
HSIAO B S, YANG L, SOMANI R H, et al. Unexpected shish-kebab structure in a sheared polyethylene melt[J]. Phys Rev Lett, 2005, 94(11): 117802.
|
9 |
GRAHAM R S. Understanding flow-induced crystallization in polymers: a perspective on the role of molecular simulations[J]. J Rheol, 2019, 63(1): 203-214.
|
10 |
ZHONG Y, FANG H G, ZHANG Y Q, et al. Rheologically determined critical shear rates for shear-induced nucleation rate enhancements of poly(lactic acid)[J]. ACS Sustainable Chem Eng, 2013, 1(6): 663-672.
|
11 |
XU H, XIE L, HAKKARAINEN M. Beyond a model of polymer processing-triggered shear: reconciling shish-kebab formation and control of chain degradation in sheared poly(L-lactic acid)[J]. ACS Sustainable Chem Eng, 2015, 3(7): 1443-1452.
|
12 |
JALALI A, HUNEAULT M A, NOFAR M, et al. Effect of branching on flow-induced crystallization of poly(lactic acid)[J]. Eur Polym J, 2019, 119: 410-420.
|
13 |
ZHANG Z, HATZIKIRIAKOS S G. Flow-induced crystallization of polylactides[J]. J Rheol, 2022, 66(2): 257-273.
|
14 |
BIELA T, DUDA A, PENCZEK S, et al. Well-defined star polylactides and their behavior in two-dimensional chromatography[J]. J Polym Sci Pol Chem, 2002, 40(16): 2884-2887.
|
15 |
BIELA T, DUDA A, RODE K, et al. Characterization of star-shaped poly(L-lactide)s by liquid chromatography at critical conditions[J]. Polymer, 2003, 44(6): 1851-1860.
|
16 |
BRZEZIŃSKI M, BIELA T. Supramolecular polylactides by the cooperative interaction of the end groups and stereocomplexation[J]. Macromolecules, 2015, 48(9): 2994-3004.
|
17 |
YANG D D, WU C, WU G, et al. Toughening of polylactide with high tensile strength via constructing an integrative physical crosslinking network based on ionic interactions[J]. Macromolecules, 2021, 54(1): 291-301.
|
18 |
KULKARNI A. Effect of ionic interactions on crystallization of star telechelic poly(L-lactide) ionomers[J]. Polymer, 2022, 252: 124939.
|
19 |
ZHANG Z, CHEN Q, COLBY R H. Dynamics of associative polymers[J]. Soft Matter, 2018, 14(16): 2961-2977.
|
20 |
ZHANG Z, LIU C, CAO X, et al. Linear viscoelastic and dielectric properties of strongly hydrogen-bonded polymers near the sol-gel transition[J]. Macromolecules, 2016, 49(23): 9192-9202.
|
21 |
ZHANG Z, HUANG C, WEISS R A, et al. Association energy in strongly associative polymers[J]. J Rheol, 2017, 61(6): 1199-1207.
|
22 |
CHEN Q. Dynamics of ion-containing polymers[J]. Acta Polym Sin, 2017, (8): 1220-1233.
|
23 |
WU S, LIU S, ZHANG Z, et al. Dynamics of telechelic ionomers with distribution of number of ionic stickers at chain ends[J]. Macromolecules, 2019, 52(6): 2265-2276.
|
24 |
WU S, CAO X, ZHANG Z, et al. Molecular design of highly stretchable ionomers[J]. Macromolecules, 2018, 51(12): 4735-4746.
|
25 |
FERRY J D. Viscoelastic properties of polymers [M]. 3rd Ed. Wiley: New York, 1980.
|
26 |
LIU C, HE J, VAN RUYMBEKE E, et al. Evaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight [J]. Polymer, 2006, 47(13): 4461-4479.
|
27 |
LIU S, WU S, CHEN Q. Using coupling motion of connecting ions in designing telechelic ionomers[J]. ACS Macro Lett, 2020, 9(7): 917-923.
|
28 |
LIU S, ZHANG Z, CHEN Q, et al. Nonlinear rheology of telechelic ionomers based on sodium sulfonate and carboxylate[J]. Macromolecules, 2021, 54(20): 9724-9738.
|
29 |
OTHMAN N, ACOSTA-RAMÍREZ A, MEHRKHODAVANDI P, et al. Solution and melt viscoelastic properties of controlled microstructure poly(lactide)[J]. J Rheol, 2011, 55(5): 987-1005.
|
30 |
LEIBLER L, RUBINSTEIN M, COLBY R H. Dynamics of reversible networks [J]. Macromolecules, 1991, 24(16): 4701-4707.
|
31 |
CHEN Q, HUANG C, WEISS R A, et al. Viscoelasticity of reversible gelation for ionomers[J]. Macromolecules, 2015, 48(4): 1221-1230.
|
32 |
ZHANG J, CHEN Q. Shear-induced precursors of fibrillar crystals of poly(butene-1): a rheological study[J]. Chin J Polym Sci, 2022, 40(6): 618-623.
|
33 |
LIU C, ZHANG J, ZHANG Z, et al. Shear-induced oriented crystallization for isotactic poly(1-butene) and its copolymer with ethylene[J]. Macromolecules, 2020, 53(8): 3071-3081.
|