
应用化学 ›› 2023, Vol. 40 ›› Issue (8): 1063-1076.DOI: 10.19894/j.issn.1000-0518.230048
罗二桂(), 唐涛, 王艺, 张俊明, 常宇虹, 胡天军, 贾建峰(
)
收稿日期:
2023-03-06
接受日期:
2023-06-01
出版日期:
2023-08-01
发布日期:
2023-08-24
通讯作者:
罗二桂,贾建峰
基金资助:
Er-Gui LUO(), Tao TANG, Yi WANG, Jun-Ming ZHANG, Yu-Hong CHANG, Tian-Jun HU, Jian-Feng JIA(
)
Received:
2023-03-06
Accepted:
2023-06-01
Published:
2023-08-01
Online:
2023-08-24
Contact:
Er-Gui LUO,Jian-Feng JIA
About author:
jiajf@dns.sxnu.edu.cnSupported by:
摘要:
通过两电子氧还原反应(2e-ORR)电化学合成过氧化氢(H2O2)的显著优势是高成本效益和环境友好性,且可以实现H2O2的按需现场生产,其关键技术之一是安全、经济和高效2e-ORR催化剂的开发。本文概述了利用2e-ORR制备H2O2贵金属基催化材料近10年的研究进展。从ORR反应机理出发,介绍了贵金属表面反应途径的调节旋钮,即*OOH结合能和O2吸附模式; 重点总结并举例说明了贵金属材料的几何结构和电子结构调控的方法学,强调了平衡优化催化活性和选择性的重要性; 此外,简要介绍了基础实验室中2e-ORR催化剂性能的评估方法; 最后,讨论了贵金属电催化合成H2O2的挑战和前景,特别是催化剂的稳定性和成本的客观评价。旨在为新型2e-ORR催化剂的理性设计提供参考。
中图分类号:
罗二桂, 唐涛, 王艺, 张俊明, 常宇虹, 胡天军, 贾建峰. 两电子氧还原制备过氧化氢:贵金属催化剂的几何与电子结构调控的研究进展[J]. 应用化学, 2023, 40(8): 1063-1076.
Er-Gui LUO, Tao TANG, Yi WANG, Jun-Ming ZHANG, Yu-Hong CHANG, Tian-Jun HU, Jian-Feng JIA. Progress on Tuning the Geometric and Electronic Structure of Precious Metal Catalysts for Hydrogen Peroxide Production via Two-Electron Oxygen Reduction[J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1063-1076.
图1 (A)合成H2O2的燃料电池示意图[22]; (B)合成H2O2的电解反应器示意图[23]; (C) 4e-ORR 和2e-ORR反应机理示意图[42]; (D) 4e-ORR(蓝色)和2e-ORR(绿色)活性的火山型曲线[42]; (E) O2吸附的3种模式[43]
Fig.1 (A) Schematic illustration of a fuel cell for the synthesis of H2O2[22]; (B) Schematic illustration of a electrolysis cell for the synthesis of H2O2[23]; (C) Schematic diagram of the mechanisms for 4e-ORR and 2e-ORR[42]; (D) 4e-ORR (blue) and 2e-ORR (green) activity volcano curves[42]; (E) Schematic illustration of three modes of O2 adsorption[43]
图3 (A) AuPd合金的高分辨透射电子显微镜图及O2在Pd单原子(左)和Pd单原子层(右)上的吸附模式[62];(B)不同Pd含量AuPd合金催化剂的H2O2选择性[62]; (C)Pt-Hg合金结构示意图[27]; (D)几种金属表面O2还原为H2O2的自由能图[27]; (E) Pt-Hg/C催化剂在O2饱和0.1 mol/L HClO4中的极化曲线和相应的H2O2产率[27]; (F) AuCu和AD-Pt@AuCu上O2还原为H2O2的自由能图[64]
Fig.3 (A) HRTEM image of AuPd alloy and adsorption of O2 on Pd isolated atoms (left) and Pd monolayer (right) [62]; (B) H2O2 selectivity of AuPd alloy catalysts with varied Pd content[62]; (C) Schematic depiction of Pt-Hg alloy[27]; (D) Free-energy diagram for 2e-ORR to H2O2 on several metal surfaces[27]; (E) Polarization curve and corresponding H2O2 yield of Pt-Hg/C catalyst in O2-saturated 0.1 mol/L HClO4[27]; (F) Free-energy diagram for 2e-ORR to H2O2 on AuCu and AD-Pt@AuCu[64]
图4 (A)杯状[4]芳烃分子修饰的Pt表面的示意图[70]; (B) CN-修饰Pt(111)电极的极化曲线[67]; (C)不同CN-覆盖率下Pt(111)电极的ORR活性和环电流[67]; (D)碳包覆层对Pt/C催化剂上O2吸附模式和ORR反应途径的影响[72]
Fig.4 (A) Schematic diagram of Pt surface modified with calix[4]arene molecules[70]; (B) Polarization curve of CN--adsorbed Pt(111) electrode[67]; (C) ORR activity and ring current of CN--adsorbed Pt(111) electrode under different CN- coverage[67]; (D) The effect of carbon coating on the O2 adsorption mode and ORR pathway on Pt/C catalyst[72]
图5 (A) Pt/TiN催化剂的ORR极化曲线和相应的环电流[73]; (B) Pt单原子催化剂的载体效应[74]; (C) CuS x 载Pt SACs(h-Pt1-CuS x )的合成方法示意图[75]; (D) h-Pt1-CuSx及其对比样的ORR性能[75]; (E) Pt/HSC的AC-STEM图[76]; Pt/HSC及其对比样的(F)ORR活性和(G)H2O2选择性[76]
Fig.5 (A) ORR polarization curves and ring currents of Pt/TiN catalysts[73]; (B) Support effect in Pt SACs[74]; (C) Schematic illustration of the preparation of CuS x -supported Pt SACs (h-Pt1-CuS x )[75]; (D) ORR performance of h-Pt1-CuS x and control samples[75]; (E) AC-STEM image of Pt/HSC[76]; (F) ORR activity and (G) H2O2 selectivity of Pt/HSC and control samples[76]
图6 (A) Pt基催化剂上H2O2生成的尺寸依赖性[83]; (B)晶型和无定形Pd纳米颗粒上H2O2选择性对比[84]; (C)基于DFT计算的Pd δ+-OCNT活性位点的最优结构及(D)2e-ORR活性火山型曲线[53]
Fig.6 (A) Size dependence of H2O2 formation on Pt-based catalysts[83]; (B) H2O2 selectivity on crystalline Pd and amorphous Pd nanoparticles[84]; (C) Optimized structures of active sites in Pd δ+-OCNT catalyst and (D) activity volcano plot based on DFT calculations[53]
1 | CIRIMINNA R, ALBANESE L, MENEGUZZO F, et al. Hydrogen peroxide: a key chemical for today's sustainable development[J]. ChemSusChem, 2016, 9(24): 3374-3381. |
2 | LANE B S, BURGESS K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide[J]. Chem Rev, 2003, 103(7): 2457-2473. |
3 | HAGE R, LIENKE A. Applications of transition-metal catalysts to textile and wood-pulp bleaching[J]. Angew Chem Int Ed, 2005, 45(2): 206-222. |
4 | BRILLAS E, SIRES I, OTURAN M A. Electro-fenton process and related electrochemical technologies based on Fenton′s reaction chemistry[J]. Chem Rev, 2009, 109(12): 6570-6631. |
5 | CAMPOS-MARTIN J M, BLANCO-BRIEVA G, FIERRO J L. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process[J]. Angew Chem Int Ed, 2006, 45(42): 6962-6984. |
6 | GAO G, TIAN Y, GONG X, et al. Advances in the production technology of hydrogen peroxide[J]. Chin J Catal, 2020, 41(7): 1039-1047. |
7 | YI Y, WANG L, LI G, et al. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method[J]. Catal Sci Technol, 2016, 6(6): 1593-1610. |
8 | EDWARDS J K, CARLEY A F, HERZING A A, et al. Direct synthesis of hydrogen peroxide from H2 and O2 using supported Au-Pd catalysts[J]. Faraday Discuss, 2008, 138: 225-239. |
9 | EDWARDS J K, HUTCHINGS G J. Palladium and gold-palladium catalysts for the direct synthesis of hydrogen peroxide[J]. Angew Chem Int Ed, 2008, 47(48): 9192-9198. |
10 | GHEEWALA C D, COLLINS B E, LAMBERT T H. An aromatic ion platform for enantioselective Bronsted acid catalysis[J]. Science, 2016, 351(6276): 961-965. |
11 | FLAHERTY D W. Direct synthesis of H2O2 from H2 and O2 on Pd catalysts: current understanding, outstanding questions, and research needs[J]. ACS Catal, 2018, 8(2): 1520-1527. |
12 | RANGANATHAN S, SIEBER V. Recent advances in the direct synthesis of hydrogen peroxide using chemical catalysis- a review[J]. Catalysts, 2018, 8(9): 379. |
13 | EDWARDS J K, FREAKLEY S J, LEWIS R J, et al. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen[J]. Catal Today, 2015, 248: 3-9. |
14 | YANG S, VERDAGUER-CASADEVALL A, ARNARSON L, et al. Toward the decentralized electrochemical production of H2O2: a focus on the catalysis[J]. ACS Catal, 2018, 8(5): 4064-4081. |
15 | LEWIS R J, HUTCHINGS G J. Recent advances in the direct synthesis of H2O2[J]. ChemCatChem, 2018, 11(1): 298-308. |
16 | JIANG Y, NI P, CHEN C, et al. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry[J]. Adv Energy Mater, 2018, 8(31): 1801909. |
17 | WANG Y, WATERHOUSE G I N, SHANG L, et al. Electrocatalytic oxygen reduction to hydrogen peroxide: from homogeneous to heterogeneous electrocatalysis[J]. Adv Energy Mater, 2020, 11(15): 2003323. |
18 | OTSUKA K, YAMANAKA I. One step synthesis of hydrogen peroxide through fuel cell reaction[J]. Electrochim Acta, 1990, 35(2): 319-322. |
19 | YAMANAKA I, ONIZAWA T, TAKENAKA S, et al. Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system[J]. Angew Chem Int Ed, 2003, 42(31): 3653-3655. |
20 | YAMANAKA I, HASHIMOTO T, ICHIHASHI R, et al. Direct synthesis of H2O2 acid solutions on carbon cathode prepared from activated carbon and vapor-growing-carbon-fiber by a H2/O2 fuel cell[J]. Electrochim Acta, 2008, 53(14): 4824-4832. |
21 | JUNG E, SHIN H, HOOCH ANTINK W, et al. Recent advances in electrochemical oxygen reduction to H2O2: catalyst and cell design[J]. ACS Energy Lett, 2020, 5(6): 1881-1892. |
22 | YAMANAKA I, TAZAWA S, MURAYAMA T, et al. Catalytic synthesis of neutral H2O2 solutions from O2 and H2 by a fuel cell reaction[J]. ChemSusChem, 2008, 1(12): 988-992. |
23 | YAMANAKA I, MURAYAMA T. Neutral H2O2 synthesis by electrolysis of water and O2[J]. Angew Chem Int Ed, 2008, 47(10): 1900-1902. |
24 | ZHANG J, ZHANG H, CHENG M J, et al. Tailoring the electrochemical production of H2O2: strategies for the rational design of high-performance electrocatalysts[J]. Small, 2020, 16(15): e1902845. |
25 | WANG N, MA S, ZUO P, et al. Recent progress of electrochemical production of hydrogen peroxide by two-electron oxygen reduction reaction[J]. Adv Sci, 2021, 8(15): e2100076. |
26 | 喻奥, 马国铭, 朱龙涛, 等. 电化学还原二氧化碳合成碳材料电催化还原氧气合成过氧化氢[J]. 应用化学, 2022, 39(4): 657-665. |
YU A, MA G M, ZHU L T, et al. Electrochemical reduction of carbon dioxide to carbon materials for two-electron oxygen reduction reaction[J]. Chin J Appl Chem, 2022, 39(4): 657-665. | |
27 | SIAHROSTAMI S, VERDAGUER-CASADEVALL A, KARAMAD M, et al. Enabling direct H2O2 production through rational electrocatalyst design[J]. Nat Mater, 2013, 12(12): 1137-1143. |
28 | VERDAGUER-CASADEVALL A, DEIANA D, KARAMAD M, et al. Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering[J]. Nano Lett, 2014, 14(3): 1603-1608. |
29 | CHEN S, CHEN Z, SIAHROSTAMI S, et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide[J]. J Am Chem Soc, 2018, 140(25): 7851-7859. |
30 | MELCHIONNA M, FORNASIERO P, PRATO M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions[J]. Adv Mater, 2019, 31(13): e1802920. |
31 | ZHOU Y, CHEN G, ZHANG J. A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide[J]. J Mater Chem A, 2020, 8(40): 20849-20869. |
32 | KIM H W, ROSS M B, KORNIENKO N, et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J]. Nat Catal, 2018, 1(4): 282-290. |
33 | LU Z, CHEN G, SIAHROSTAMI S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nat Catal, 2018, 1(2): 156-162. |
34 | SUN Y, SILVIOLI L, SAHRAIE N R, et al. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts[J]. J Am Chem Soc, 2019, 141(31): 12372-12381. |
35 | QIANG Z, CHANG J H, HUANG C P. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions[J]. Water Res, 2002, 36(1): 85-94. |
36 | KUO W G. Decolorizing dye wastewater with Fenton's reagent[J]. Water Res, 1992, 26(7): 881-886. |
37 | MIKLOS D B, REMY C, JEKEL M, et al. Evaluation of advanced oxidation processes for water and wastewater treatment-a critical review[J]. Water Res, 2018, 139: 118-131. |
38 | KREMER M L. The Fenton reaction. dependence of the rate on pH[J]. J Phys Chem A, 2003, 107(11): 1734-1741. |
39 | MUSTAIN W E, CHATENET M, PAGE M, et al. Durability challenges of anion exchange membrane fuel cells[J]. Energy Environ Sci, 2020, 13(9): 2805-2838. |
40 | MERLE G, WESSLING M, NIJMEIJER K. Anion exchange membranes for alkaline fuel cells: a review[J]. J Membrane Sci, 2011, 377(1): 1-35. |
41 | LI W, BONAKDARPOUR A, GYENGE E, et al. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell[J]. ChemSusChem, 2013, 6(11): 2137-2143. |
42 | SIAHROSTAMI S, VILLEGAS S J, BAGHERZADEH MOSTAGHIMI A H, et al. A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide[J]. ACS Catal, 2020, 10(14): 7495-7511. |
43 | GAO J, LIU B. Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts[J]. ACS Mater Lett, 2020, 2(8): 1008-1024. |
44 | KOPER M T M. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis[J]. Chem Sci, 2013, 4(7): 2710-2723. |
45 | SIAHROSTAMI S, VERDAGUER-CASDEVALL A, KARAMAD M, et al. Activity and selectivity for O2 reduction to H2O2 on transition metal surfaces[J]. ECS Trans, 2013, 58(2): 53-62. |
46 | KULKARNI A, SIAHROSTAMI S, PATEL A, et al. Understanding catalytic activity trends in the oxygen reduction reaction[J]. Chem Rev, 2018, 118(5): 2302-2312. |
47 | ZAGAL J H, KOPER M T. Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction[J]. Angew Chem Int Ed, 2016, 55(47): 14510-14521. |
48 | SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: insights into materials design[J]. Science, 2017, 355(6321): eaad4998. |
49 | TRIPKOVIC V, SKULASON E, SIAHROSTAMI S, et al. The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations[J]. Electrochim Acta, 2010, 55(27): 7975-7981. |
50 | MONTEMORE M M, VAN SPRONSEN M A, MADIX R J, et al. O2 activation by metal surfaces: implications for bonding and reactivity on heterogeneous catalysts[J]. Chem Rev, 2018, 118(5): 2816-2862. |
51 | CHENG J, LIBISCH F, CARTER E A. Dissociative adsorption of O2 on Al(111): the role of orientational degrees of freedom[J]. J Phys Chem Lett, 2015, 6(9): 1661-1665. |
52 | TANG J, ZHAO T, SOLANKI D, et al. Selective hydrogen peroxide conversion tailored by surface, interface, and device engineering[J]. Joule, 2021, 5(6): 1432-1461. |
53 | CHANG Q, ZHANG P, MOSTAGHIMI A H B, et al. Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon[J]. Nat Commun, 2020, 11(1): 2178. |
54 | JUNG E, SHIN H, LEE B H, et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production[J]. Nat Mater, 2020, 19(4): 436-442. |
55 | SHENG H, HERMES E D, YANG X, et al. Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2)[J]. ACS Catal, 2019, 9(9): 8433-8442. |
56 | SUN Y, SINEV I, JU W, et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts[J]. ACS Catal, 2018, 8(4): 2844-2856. |
57 | JIANG K, BACK S, AKEY A J, et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination[J]. Nat Commun, 2019, 10(1): 3997. |
58 | ČOLIĆ V, YANG S, RÉVAY Z, et al. Carbon catalysts for electrochemical hydrogen peroxide production in acidic media[J]. Electrochim Acta, 2018, 272: 192-202. |
59 | MURRAY A T, VOSKIAN S, SCHREIER M, et al. Electrosynthesis of hydrogen peroxide by phase-transfer catalysis[J]. Joule, 2019, 3(12): 2942-2954. |
60 | ZHANG J, YANG H, GAO J, et al. Design of hierarchical, three-dimensional free-standing single-atom electrode for H2O2 production in acidic media[J]. Carbon Energy, 2020, 2(2): 276-282. |
61 | GAO J, YANG H B, HUANG X, et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst[J]. Chem, 2020, 6(3): 658-674. |
62 | JIRKOVSKY J S, PANAS I, AHLBERG E, et al. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production[J]. J Am Chem Soc, 2011, 133(48): 19432-19441. |
63 | DEIANA D, VERDAGUER-CASADEVALL A, MALACRIDA P, et al. Determination of core-shell structures in Pd-Hg nanoparticles by STEM-EDX[J]. ChemCatChem, 2015, 7(22): 3748-3752. |
64 | SHI Q, ZHU W, ZHONG H, et al. Highly dispersed platinum atoms on the surface of AuCu metallic aerogels for enabling H2O2 production[J]. ACS Appl Energy Mater, 2019, 2(11): 7722-7727. |
65 | BRIMAUD S, ENGSTFELD A K, ALVES O B, et al. Structure-reactivity correlation in the oxygen reduction reaction: activity of structurally well defined AuxPt1- x/Pt(111) monolayer surface alloys[J]. J Electroanal Chem, 2014, 716: 71-79. |
66 | ZHENG Z, NG Y H, WANG D W, et al. Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H2O2 production[J]. Adv Mater, 2016, 28(45): 9949-9955. |
67 | CIAPINA E G, LOPES P P, SUBBARAMAN R, et al. Surface spectators and their role in relationships between activity and selectivity of the oxygen reduction reaction in acid environments[J]. Electrochem Commun, 2015, 60: 30-33. |
68 | MARKOVIĆ N M, GASTEIGER H A, GRGUR B N, et al. Oxygen reduction reaction on Pt(111): effects of bromide[J]. J Electroanal Chem, 1999, 467(1/2): 157-163. |
69 | STAMENKOVIC V, M. MARKOVIC N, ROSS P N. Structure-relationships in electrocatalysis: oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing chloride ions[J]. J Electroanal Chem, 2001, 500(1/2): 44-51. |
70 | GENORIO B, STRMCNIK D, SUBBARAMAN R, et al. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules[J]. Nat Mater, 2010, 9(12): 998-1003. |
71 | HE D, ZHONG L, GAN S, et al. Hydrogen peroxide electrosynthesis via regulating the oxygen reduction reaction pathway on Pt noble metal with ion poisoning[J]. Electrochim Acta, 2021, 371: 137721. |
72 | CHOI C H, KWON H C, YOOK S, et al. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface[J]. J Phys Chem C, 2014, 118(51): 30063-30070. |
73 | YANG S, KIM J, TAK Y J, et al. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions[J]. Angew Chem Int Ed, 2016, 55(6): 2058-2062. |
74 | YANG S, TAK Y J, KIM J, et al. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction[J]. ACS Catal, 2017, 7(2): 1301-1307. |
75 | SHEN R, CHEN W, PENG Q, et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution[J]. Chem, 2019, 5(8): 2099-2110. |
76 | CHOI C H, KIM M, KWON H C, et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J]. Nat Commun, 2016, 7: 10922. |
77 | KIM J H, SHIN D, LEE J, et al. A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction[J]. ACS Nano, 2020, 14(2): 1990-2001. |
78 | ZHAO J, FU C, YE K, et al. Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs[J]. Nat Commun, 2022, 13(1): 685. |
79 | BONAKDARPOUR A, DAHN T R, ATANASOSKI R T, et al. H2O2 release during oxygen reduction reaction on Pt nanoparticles[J]. Electrochem Solid-State Lett, 2008, 11(11): B208. |
80 | INABA M, YAMADA H, TOKUNAGA J, et al. Effect of agglomeration of Pt/C catalyst on hydrogen peroxide formation[J]. Electrochem Solid-State Lett, 2004, 7(12): A474. |
81 | GARA M, LABORDA E, HOLDWAY P, et al. Oxygen reduction at sparse arrays of platinum nanoparticles in aqueous acid: hydrogen peroxide as a liberated two electron intermediate[J]. Phys Chem Chem Phys, 2013, 15(44): 19487-19495. |
82 | YANG H, KUMAR S, ZOU S. Electroreduction of O2 on uniform arrays of Pt nanoparticles[J]. J Electroanal Chem, 2013, 688: 180-188. |
83 | VON WEBER A, BAXTER E T, WHITE H S, et al. Cluster size controls branching between water and hydrogen peroxide production in electrochemical oxygen reduction at Ptn/ITO[J]. J Phys Chem C, 2015, 119(20): 11160-11170. |
84 | WANG Y L, GURSES S, FELVEY N, et al. In situ deposition of Pd during oxygen reduction yields highly selective and active electrocatalysts for direct H2O2 production[J]. ACS Catal, 2019, 9(9): 8453-8463. |
85 | PRABHAKARAN V, ARGES C G, RAMANI V. Investigation of polymer electrolyte membrane chemical degradation and degradation mitigation using in situ fluorescence spectroscopy[J]. Proc Nat Acad Sci USA, 2012, 109(4): 1029-1034. |
86 | 李赫, 李宫, 宫雪, 等. Pt/C催化剂长时间ORR过程性能衰减的机理[J]. 应用化学, 2022, 39(10): 1564-1571. |
LI H, LI G, GONG X, et al. Research on performance decay mechanism of Pt/C catalyst in long-term ORR test[J]. Chin J Appl Chem, 2022, 39(10): 1564-1571. | |
87 | LUO E, CHU Y, LIU J, et al. Pyrolyzed M-Nx catalysts for oxygen reduction reaction: progress and prospects[J]. Energy Environ Sci, 2021, 14(4): 2158-2185. |
[1] | 董以宁, 李赫, 宫雪, 韩策, 宋平, 徐维林. 非Pt基催化剂在质子交换膜燃料电池阴极氧还原反应中的研究进展[J]. 应用化学, 2023, 40(8): 1077-1093. |
[2] | 惠连成, 庄鉴行, 肖顺, 李美平, 靳梦圆, 吕青. 镍氮掺杂石墨炔用作高效氧还原电催化剂[J]. 应用化学, 2023, 40(8): 1205-1213. |
[3] | 伍凡, 田贺元, 刘鹏, 孙立伟, 张一波, 杨向光. 高氧空位尖晶石型锰基催化剂用于低温NH3-SCR反应[J]. 应用化学, 2023, 40(5): 697-707. |
[4] | 高静霞, 王子安, 张连明, 李建平. 大环化合物在高选择性分子印迹识别体系中的研究进展[J]. 应用化学, 2023, 40(1): 24-39. |
[5] | 林锦, 王芳珠, 吕灵灵. 工业原料制备大孔拟薄水铝石及在异佛尔酮选择性加氢中的应用[J]. 应用化学, 2023, 40(1): 79-90. |
[6] | 郭佳昕, 刘洋, 徐长山, 刘晓男, 程亮. 不同pH值下MgO NPs悬浮液中Mg2+质量浓度的动态变化及其对小麦生长的影响[J]. 应用化学, 2022, 39(9): 1401-1411. |
[7] | 张丹, 尚润梅, 赵振涛, 李君华, 邢锦娟. V/Ce-Al2O3催化甲醇选择性氧化制备二甲氧基甲烷[J]. 应用化学, 2022, 39(9): 1429-1436. |
[8] | 张艺潆, 李翠艳, 赵杰, 余笑明, 方千荣. 卟啉-硫醚基共价有机框架材料用于氧还原反应电催化剂[J]. 应用化学, 2022, 39(4): 647-656. |
[9] | 王丹, 侯现飚, 汪兴坤, 刘志承, 王焕磊, 黄明华. 应用于锌空气电池的碳包覆铁基纳米颗粒电催化剂研究进展[J]. 应用化学, 2022, 39(10): 1488-1500. |
[10] | 李赫, 李宫, 宫雪, 阮明波, 韩策, 宋平, 徐维林. Pt/C催化剂长时间ORR过程性能衰减的机理[J]. 应用化学, 2022, 39(10): 1564-1571. |
[11] | 唐静, 张娜, 史冬旭, 张芳慧, 唐健杰. UiO-66-NH2接枝吡啶亚胺钴系催化剂的合成及催化乙烯齐聚性能[J]. 应用化学, 2022, 39(02): 258-265. |
[12] | 刘文彬, 杨莎莎, 黄国林, 樊利娇, 谢宇铭. 磷酸化黄原胶/氧化石墨烯的合成及其对铀的选择性吸附[J]. 应用化学, 2021, 38(6): 658-667. |
[13] | 谢志琦, 张婷, 李英崴, 王周君, 代飞, 张瑞锐, 刘瑞霞. 钒磷氧合成条件对丁烷选择性氧化催化性能的影响[J]. 应用化学, 2021, 38(4): 414-421. |
[14] | 魏雪莹, 吴玮, 乃永宁, 姜梦圆, 田诗伟, 毛国梁. 膦胺铬和双膦铬催化乙烯选择性齐聚研究进展[J]. 应用化学, 2021, 38(2): 136-156. |
[15] | 李宫, 金龙一, 姚鹏飞, 刘聪, 徐维林. 介孔炭负载铂纳米粒子的高效氧还原催化剂的可控设计[J]. 应用化学, 2021, 38(12): 1639-1646. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2008
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 734
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||