应用化学 ›› 2023, Vol. 40 ›› Issue (5): 708-719.DOI: 10.19894/j.issn.1000-0518.220337
收稿日期:
2022-10-17
接受日期:
2023-03-14
出版日期:
2023-05-01
发布日期:
2023-05-26
通讯作者:
潘卉,王晓冬
基金资助:
Lin YANG1, Hui PAN1(), Ding-Feng GAO1, Xiao-Dong WANG2()
Received:
2022-10-17
Accepted:
2023-03-14
Published:
2023-05-01
Online:
2023-05-26
Contact:
Hui PAN,Xiao-Dong WANG
About author:
donguser@henu.edu.cnSupported by:
摘要:
以甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、丙烯酸(AA)和丙烯酰胺(AM)为共聚单体,通过水乳液聚合制备一种四元共聚物(PBMAA)乳液并自然干燥成膜,然后对芳纶Kevlar-1313(K-1313)共聚物进行改性,得到改性共聚物(K-PBMAA),并优化其添加比例以期提高涂饰膜的强度和耐磨损性能。将制备的实心纳米二氧化硅(记为S-SiO2)和中空纳米二氧化硅(记为H-SiO2)分别添加到K-PBMAA中制备纳米复合皮革涂饰剂(记为S-SiO2/K-PMBAA和H-SiO2/K-PMBAA)并用于绵羊皮的涂饰,发现K-1313和纳米SiO2的同时引入使得复合涂膜的最大热分解温度由404 ℃提升至411 ℃,力学性能由4.03 MPa提高到8.67 MPa。
中图分类号:
杨林, 潘卉, 郜定峰, 王晓冬. 芳纶改性聚合物基纳米复合皮革涂饰剂的制备和性能[J]. 应用化学, 2023, 40(5): 708-719.
Lin YANG, Hui PAN, Ding-Feng GAO, Xiao-Dong WANG. Preparation and Characterization of Nanocomposite Leather Finishing Agent Based on Aramid Modified Polymer[J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 708-719.
图2 (A) K-1313、PBMAA和K-PBMAA的FT-IR谱图; (B) S-SiO2、H-SiO2、S-SiO2/K-PBMAA和H-SiO2/K-PBMAA的FT-IR谱图; (C)不同纳米复合物乳液及涂饰膜
Fig.2 (A) FT-IR spectra of K-1313, PBMAA and K-PBMAA; (B) FT-IR spectra of S-SiO2, H-SiO2, S-SiO2/K-PBMAA and H-SiO2/K-PBMAA; (C) Different nanocomposite emulsions and coatings
图5 (A)系列K-PBMAA涂饰膜的吸水率; (B)系列K-PBMAA涂饰膜在空气中对水的接触角
Fig.5 (A) The water absorption of a series of K-PBMAA coatings; (B) The contact angle with water in air of a series of K-PBMAA coatings
图6 (A) 系列不同涂饰膜的吸水率; (B) 涂饰前后绵羊皮的吸水率比较(未涂饰革、PBMAA涂饰革、S-SiO2/PBMAA涂饰革、H-SiO2/PBMAA涂饰革、K-PBMAA涂饰革、S-SiO2/K-PBMAA涂饰革、H-SiO2/K-PBMAA涂饰革分别标记为0#、1#、2#、3#、4#、5#和6#,下同)
Fig.6 (A) The water absorption of a series of different coatings; (B) Comparison of water absorption of sheepskin before and after finishing (Uncoated leather, PBMAA coated leather, S-SiO2/PBMAA coated leather, H-SiO2/PBMAA coated leather, K-PBMAA coated leather, S-SiO2/K-PBMAA coated leather, H-SiO2/K-PBMAA coated leather are labeled as 0#, 1#, 2#, 3#, 4#, 5# and 6#, respectively, the same below)
图9 (A) 系列K-PBMAA涂饰膜的导热系数;(B) 不同涂饰膜的导热系数;(C) 涂饰前后绵羊皮的导热系数比较
Fig.9 (A) Thermal conductivity of a series of K-PBMAA coatings; (B) Thermal conductivity of different coatings; (C) Comparison of thermal conductivity of sheepskin before and after finishing
图10 不同涂饰膜表面磨损划痕的光学显微镜图像(PBMAA、K-PBMAA、S-SiO2/K-PBMAA和H-SiO2/K-PBMAA分别被标记为A、B、C和D; A-D为涂饰膜磨损前; A'-D'为涂饰膜磨损后)
Fig.10 Optical microscope images of surface wear and scratches of different coatings (PBMAA, K-PBMAA, S-SiO2/K-PBMAA and H-SiO2/K-PBMAA are denoted as A, B, C and D; A-D are the coatings before wearing; A'-D' are the coatings after wearing)
Finished leather sample | LOI/% | Softness/mm |
---|---|---|
0# | 22.1 | 49 |
1# | 22.5 | 44 |
2# | 23.2 | 41 |
3# | 22.5 | 45 |
4# | 22.8 | 39 |
5# | 23.7 | 38 |
6# | 23.5 | 40 |
表1 涂饰前后绵羊皮的极限氧指数和柔软度
Table 1 The limiting oxygen index and softness of the finished sheepskin
Finished leather sample | LOI/% | Softness/mm |
---|---|---|
0# | 22.1 | 49 |
1# | 22.5 | 44 |
2# | 23.2 | 41 |
3# | 22.5 | 45 |
4# | 22.8 | 39 |
5# | 23.7 | 38 |
6# | 23.5 | 40 |
图11 (A) 未涂饰绵羊皮、(B) S-SiO2/K-PBMAA涂饰革和 (C) H-SiO2/K-PBMAA涂饰革的SEM形貌
Fig.11 SEM images of unfinished sheepskin (A), finished leather with S-SiO2/K-PBMAA (B) and H-SiO2/K-PBMAA (C)
1 | MOHAMED O A, MOUSTAFA A B, MEHAWED M A, et al. Styrene and butyl methacrylate copolymers and their application in leather finishing[J]. Appl Polym Sci, 2010, 111: 1488-1495. |
2 | YU Y, LIAO B, LI G N, et al. Synthesis and properties of photosensitive silicone-containing polyurethane acrylate for leather finishing agent[J]. Ind Eng Chem Res, 2014, 53: 564-571. |
3 | VAZ F A S, DE C P M, MOLINA C, et al. External polyacrylate-coating as alternative material for preparation of photopolymerized sol-gel monolithic column[J]. Talanta, 2008, 76: 226-229. |
4 | BAO Y, SHI C H, YANG Y Q, et al. Effect of hollow silica spheres on water vapor permeability of polyacrylate film[J]. RSC Adv, 2015, 5: 11485-11493. |
5 | 鲍艳, 时春华, 马建中. 中空SiO2微球的制备及其对水性聚氨酯涂膜透水汽性能的影响[J]. 硅酸盐学报, 2015, 43(1): 35-41. |
BAO Y, SHI C H, MA J Z. Fabrication of hollow silica spheres and their effect on water vapor permeability of waterborne polyurethane film[J]. Chin Ceram Soc, 2015, 43(1): 35-41. | |
6 | FANG C, HUANG X M, GE T, et al. Effect of dodecafluoroheptyl methacrylate (DFMA) on the comprehensive properties of acrylate emulsion pressure sensitive adhesives[J]. Int J Adhes Adhes, 2020, 101: 102634. |
7 | FAN Q Q, MA J Z, XU Q N. Insights into functional polymer-based organic-inorganic nanocomposites as leather finishes[J]. J Leather Sci Eng, 2019, 1: 10. |
8 | HAO L F, AN Q F, XU W, et al. Synthesis, film morphology and hydrophobicity of novel fluorinated polyacrylate emulsion and solution on silicon wafer[J]. Colloids Surf A, 2012, 396: 83-89. |
9 | KOIRY B P, KLOK H A, SINGHA N K. Copolymerization of 2,2,3,3,4,4,4-heptafluorobutyl acrylate with butyl acrylate via RAFT polymerization[J]. Fluorine Chem, 2014, 165: 109-115. |
10 | YIMMUTA K, HOMCHOOA K, HINCHIRANAN N. Poly(butyl acrylate-co-fluorinated acrylate)-graft-natural rubber: synthesis and application as compatibilizer for natural rubber/poly(butyl acrylate-co-fluorinated acrylate) films[J]. Colloids Surf A, 2018, 540: 11-22. |
11 | 彭顺金, 赵雷, 武利民. 含氟丙烯酸酯聚合物乳胶膜表面性质[J]. 物理化学学报, 2007, 23(4): 531-536. |
PENG S J, ZHAO L, WU L M. Surface properties of fluorinated acrylate polymers latex films[J]. Acta Phys-Chim Sin, 2007, 23(4): 531-536. | |
12 | 凌玲, 陈德宏, 周俊, 等. 芳纶纤维对 EPDM 绝热层烧蚀性能的影响[J]. 固体火箭技术, 2019, 42: 529-545. |
LING L, CHEN D H, ZHOU J, et al. Effects of aramid fiber on ablation property of EPDM insulation[J]. Solid Rock Technol, 2019, 42: 529-545. | |
13 | 陈健, 贾峰峰, 谢璠, 等. 芳纶纳米纤维及其复合材料研究进展[J]. 中国造纸学报, 2020, 35: 80-87. |
CHEN J, JIA F F, XIE F, et al. Research progress on aramid nanofibers and their composites[J]. Trans China Pulp Paper, 2020, 35: 80-87. | |
14 | 牟浩蕾, 解江, 裴惠, 等. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63. |
MOU H L, XIE J, PEI H, et al. Ballistic impact tests and numerical simulation of aramid fabric and containment ring[J]. J Textiles Sci, 2021, 42(11): 56-63. | |
15 | LIU H T, PANG X Y, DING W, et al. Preparation of nano-SiO2 modified graphene oxide and its application in polyacrylate emulsion[J]. Mater Today Commun, 2021, 27: 102245. |
16 | ELSAVED H, HASANIN M, REHEN M. Enhancement of multifunctional properties of leather surface decorated with silver nanoparticles (Ag NPs)[J]. J Mol Struct, 2021, 1234: 130130. |
17 | NOSRATI R, OLAD A, MARYAMI F. Visible-light induced anti-bacterial and self-cleaning waterborne polyacrylic coating modified with TiO2/polypyrrole nanocomposite; preparation and characterization[J]. J Mol Struct, 2018, 1163: 174. |
18 | LYU B, LI X R, LIU H, et al. Preparation of an amphiphilic Janus SiO2/fluorinated polyacrylate latex film and its application as a hydrophobic fabric agent[J]. J Colloid Interface Sci, 2021, 599: 88-99. |
19 | 任鹏飞, 王琦研, 吴一钒, 等. 一种核壳型有机硅改性丙烯酸酯乳液的制备[J]. 皮革与化工, 2021, 38(5): 13-17. |
REN P F, WANG Q Y, WU Y F, et al. Preparation of core-shell silicone modified acrylate emulsion[J]. Leather Chem, 2021, 38(5): 13-17. | |
20 | KANG Q L, BAO Y, LI M, et al. Effect of wall thickness of hollow TiO2 spheres on properties of polyacrylate film: thermal insulation, UV-shielding and mechanical property[J]. Prog Org Coat, 2017, 112: 153-161. |
21 | NGUYEN T V, DO T V, HA M H, et al. Crosslinking process, mechanical and antibacterial properties of UV-curable acrylate/Fe3O4-Ag nanocomposite coating[J]. Prog Org Coat, 2020, 139: 105325. |
22 | GAO D G, ZHANG M Y, LYU B, et al. Preparation of amphiphilic Janus SiO2 particles and its application on polyacrylate emulsion[J]. Colloids Surf A, 2020, 607: 125295. |
23 | BAO Y, GAO L, FENG C P, et al. Hollow flower-like ZnO: synthesis, growth mechanism and application in polyacrylate[J]. Adv Powder Technol, 2020, 31: 1975-1984. |
24 | GAIDAU C, PETICA A, IGNAT M, et al. Enhanced photocatalysts based on Ag-TiO2 and Ag-N-TiO2 nanoparticles for multifunctional leather surface coating[J]. Open Chem, 2016, 14: 383-392. |
25 | YANG F, YANG W, ZHU L Q, et al. Preparation and investigation of waterborne fluorinated polyacrylate/silica nanocomposite coatings[J]. Prog Org Coat, 2016, 95: 1-7. |
26 | 潘卉, 赵甜, 张予东, 等. 氧化钛/氧化石墨纳米复合材料的制备、表征及性能[J]. 物理化学学报, 2013, 29(3): 660-666. |
PAN H, ZHAO T, ZHANG Y D, et al. Preparation, characterization and properties of titanium oxide/graphite oxide nanocomposites[J]. Acta Phys-Chim Sin, 2013, 29(3): 660-666. | |
27 | ZHOU J H, CHEN X, DUAN H, et al. Synthesis and characterization of nano-SiO2 modified fluorine-containing polyacrylate emulsifier-free emulsion[J]. Appl Surf Sci, 2015, 331: 504-509. |
28 | BAO Y, ZHANG Y X, LIU P, et al. Novel fabrication of stable pickering emulsion and latex by hollow silica nanoparticles[J]. J Colloid Interface Sci, 2019,553: 83-90. |
29 | NGUYEN T K N, GRASSET F, STÉPHANE C, et al. Preparation and characterization of hollow silica nanocomposite functionalized with UV absorbable molybdenum cluster[J]. Elsevier, 2020, 31(2): 895-901. |
30 | MA J Z, LIU C Y, ZHANG Y H, et al. The influence of hydrogen bond and electrostatic interaction on the mechanical properties of the WPU/modified SiO2 nanocomposites[J]. Colloids Surf A, 2022, 648: 129364. |
31 | 顾云智, 黄振祝, 林树东, 等. 芳纶纳米纤维增强聚乙烯醇复合膜的制备与性能[J]. 精细化工, 2018, 35(80): 1289-1293. |
GU Y Z, HUANG Z Z, LIN S D, et al. preparation and performance research of aramid nanofibers reinforced polyvinyl alcohol composite films[J]. Fine Chem, 2018, 35(80): 1289-1293. | |
32 | NIE C, YANG Y, PENG Z, et al. Aramid nanofiber as an emerging nanofibrous modifier to enhance ultrafiltration and biological performances of polymeric membranes[J]. J Membr Sci, 2017, 528: 251-263. |
33 | LIU J L, ZHANG X Y, BAO Y, et al. A facile spraying method for fabricating superhydrophobic leather coating[J]. Colloids Surf A, 2015, 472(51): 21-25. |
34 | 邢哲, 夏延致, 王川. 耐紫外线芳纶1313的制备及力学性能研究[J]. 陕西科技大学学报, 2007, 25(4): 67-70. |
XING Z, XIA Y Z, WANG C. Preparation and mechanical properties of UV resistant aramid 1313[J]. Shanxi Univ Sci, 2007, 25(4): 67-70. | |
35 | BAO Y, KANG Q L, MA J Z. Structural regulation of hollow spherical TiO2 by varying titanium source amount and their thermal insulation property[J]. Colloids Surf A, 2017, 537: 69-75. |
36 | LIN J J, BANG S H, MALAKOOTI M H, et al. Isolation of aramid nanofibers for high strength and toughness polymer nanocomposites[J]. ACS Appl Mater Interfaces,2017, 9: 11167. |
37 | LIU H T, PANG X Y, DING W, et al. Preparation of nano-SiO2 modified graphene oxide and its application in polyacrylate emulsion[J]. Mater Today Commun, 2021, 27: 102245. |
38 | 金崭凡. 还原氧化石墨烯/芳纶复合纸基材料的制备及热传导性能研究[D]. 西安: 陕西科技大学, 2021. |
JIN Z F. Preparation and thermal conductivity of RGO/arylon composite paper base materials[D]. Xi′an: Shaanxi University of Science and Technology, 2021. | |
39 | TAO D Z, LI X, DONG Y B, et al. Super-low thermal conductivity fibrous nanocomposite membrane of hollow silica/polyacrylonitrile[J]. Compos Sci Technol, 2020, 188: 107992. |
40 | 余国飞, 但年华, 但卫华. 阻燃皮革的研究进展[J]. 西部皮革, 2018, 40(5): 60-65. |
YU G F, DAN N H, DAN W H. Research progress of anti-flammability leather[J]. West Leather, 2018, 40(5): 60-65. |
[1] | 杨林涛, 李茂. 烷基取代聚对苯二甲酰对苯二胺的相对分子质量以及相对分子质量分布分析[J]. 应用化学, 2023, 40(6): 853-859. |
[2] | 张奇峰, 张振杰, 刘梦影, 潘剑, 禹兴海. ZrO2/生物炭纳米复合物催化转移氢化制备γ-戊内酯[J]. 应用化学, 2021, 38(12): 1621-1631. |
[3] | 邢雅艳, 史宇哲, 邓世贤, 赵柏涵, 刘志国. 儿茶素-银纳米复合材料的制备及其应用[J]. 应用化学, 2020, 37(9): 1062-1068. |
[4] | 赵柳, 宋胜杰, 马康富, 王宏, 付丽华, 刘新阳, 陈立东, 成卫国. 核-壳结构多酸/磁性铈铁纳米复合氧化物@SiO2吸附-氧化脱硫性能[J]. 应用化学, 2020, 37(12): 1457-1464. |
[5] | 陈广美,汪志坤,吴立霞,黄毅萍. 丙烯酸酯改性水性聚氨酯/纳米二氧化硅复合材料的制备和性能[J]. 应用化学, 2019, 36(5): 532-538. |
[6] | 刘迪,佟欢,袁琳杰,张子鹏,马康富,远琳,张婉钰,陈立东,王祥生,郭洪臣. 磷钼酸和钛硅纳米复合氧化物构筑高活性氧化脱硫催化剂[J]. 应用化学, 2018, 35(11): 1351-1356. |
[7] | 关晓琳, 贾天明, 秦雨欣, 张东海, 张扬, 范红婷, 魏强兵, 来守军. 低温水相合成巯基化聚乙烯醇/CdS量子点纳米复合物及用于测定环境水样中痕量Cu2+[J]. 应用化学, 2017, 34(3): 291-299. |
[8] | 焦媛, 刘付永, 王松柏, 双少敏, 董川. 磁性纳米复合物的制备及对铜离子(Ⅱ)的传感检测[J]. 应用化学, 2017, 34(1): 111-117. |
[9] | 于宗龙, 贾春晓, 路鑫, 韩海港, 辛炳炜. 离子液体@TiO2纳米复合材料的制备及其光催化性能[J]. 应用化学, 2016, 33(4): 459-465. |
[10] | 王农, 孟庆络. 辛烷基酚聚氧乙烯醚反相微乳体系的相行为及纳米复合碳酸盐的制备[J]. 应用化学, 2015, 32(5): 597-603. |
[11] | 李龙, 杨建军, 吴庆云, 张建安, 吴明元. 磷酸盐聚酯型水性聚氨酯/纳米SiO2的合成与性能[J]. 应用化学, 2014, 31(09): 1024-1030. |
[12] | 王熙大, 王志宁, 高从堦. 纳米复合膜在膜分离领域的研究进展[J]. 应用化学, 2014, 31(02): 123-132. |
[13] | 富慧, 种宁, 邱继善, 王雅晴, 田园园, 由吉春, 李勇进. 形状记忆聚偏氟乙烯/丙烯酸酯/碳纳米管纳米复合材料的导电及导热性能[J]. 应用化学, 2014, 31(01): 25-28. |
[14] | 王宇杰, 万东, 于海鸥, 闻新, 唐涛. 熔体自由基反应法制备聚丙烯/碳纳米管复合材料[J]. 应用化学, 2013, 30(04): 413-419. |
[15] | 富慧, 邱继善, 种宁, 王雅晴, 田园园, 由吉春, 李勇进. 碳纳米管的加入对聚偏氟乙烯/丙烯酸酯聚合物形状记忆性能影响[J]. 应用化学, 2013, 30(02): 134-137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||