应用化学 ›› 2023, Vol. 40 ›› Issue (5): 720-729.DOI: 10.19894/j.issn.1000-0518.220349
收稿日期:
2022-10-25
接受日期:
2023-03-18
出版日期:
2023-05-01
发布日期:
2023-05-26
通讯作者:
徐昕荣
基金资助:
Juan XIAO, Zhi-Feng SHI, Jia LIU, Bing LI, Xin-Rong XU()
Received:
2022-10-25
Accepted:
2023-03-18
Published:
2023-05-01
Online:
2023-05-26
Contact:
Xin-Rong XU
About author:
xxrong@scut.edu.cnSupported by:
摘要:
以生物材料羟基磷灰石(HA)为样品模型,系统研究了HA样品在不同质量状态下对X射线衍射测试结果的作用。通过考察样品状态确认(块体、层状和粉末等)、实验方法选择(粉末多晶衍射和薄膜掠入射衍射等)以及环境条件控制(温度、湿度及X射线下辐照时间等)等因素,评价样品的质量控制对X射线衍射(XRD)检测数据准确性与真实性的影响。结果表明,与HA块状样品相比,经过研磨过筛处理后的粉末试样XRD特征峰强度显著增强,差异可增加至1倍以上。针对HA多层状生长样品,结合掠入射和常规粉末衍射可精准实现各层物相解析。HA粉末样品的粒径、样品量及对应的装填方式会影响XRD检测结果,粒径37 μm的HA粉末样品的特征峰强是粒径137 μm样品1倍左右;而少量样品的中部空置制样,可导致特征峰峰位由31.8(°)偏移至31.4(°),峰强从11213.68降到601.65。另外,对于稳定性不佳或对环境温湿度敏感的试样,采取合适的保存和检测方式,可有效预防和避免错误的检测与结果分析。因此,全面的质量控制对高质量的XRD检测数据获取和确保实验数据质量至关重要。
中图分类号:
肖娟, 石志锋, 刘佳, 李冰, 徐昕荣. 样品质量控制对X射线衍射测量结果的影响[J]. 应用化学, 2023, 40(5): 720-729.
Juan XIAO, Zhi-Feng SHI, Jia LIU, Bing LI, Xin-Rong XU. Effect of Sample Quality Control on X-ray Diffraction Measurement Results[J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 720-729.
图2 不同形态HA粉末的扫描电子显微镜图( 短条状(A)、颗粒状 (B)和短棒状(C)); 不同形态下HA粉末的衍射图(D)、 衍射峰强度(E)和衍射峰FWHM (F)
Fig. 2 Scanning electron microscopy of HA powders with different morphologies: short stripy (A), granulation (B), short rod-like (C); HA powders with different morphologies: diffraction pattern (D), the height of diffraction peaks (E), the FWHM of diffraction peaks (F)
图3 HA块状样品在旋转不同角度下的衍射图(A); 衍射峰高度(B); 衍射峰FWHM(C); 粒度细化后HA粉状样品在旋转不同角度下的衍射图(D)
Fig. 3 XRD patterns of HA blocks with different rotation angles (A); The height of peaks (B); The FWHM of peaks (C); XRD patterns of HA powder with different rotation angles after particle size refinement (D)
图5 未研磨(A)和研磨过筛后(B)HA颗粒的SEM图; 不同方式处理颗粒的XRD图(C)
Fig. 5 SEM image of ungrinding(A) and grinding and sieving (B) of HA particles; XRD patterns under different treatment methods (C)
图9 HA粉末在23 ℃,30%、50%和80%湿度条件下放置24 h的XRD图(A); CaCl2在23 ℃、湿度50%环境放置2 h 的XRD变化图(B); HA粉末在X射线下辐照0、0.5和1 h后XRD谱图(C)
Fig.9 XRD patterns of HA powder placed at 23 ℃ and humidity of 30%, 50% and 80% for 24 h (A); XRD patterns of CaCl2 at 23 ℃ and 50% humidity for 2 h(B); XRD patterns of HA powder by X-ray irradiation for 0, 0.5 and 1 h
1 | 高继红. X 射线衍射技术在林学实验教学中的应用探究[J]. 宁夏大学学报( 自然科学版), 2018, 39(1): 94-96. |
GAO J H. Application of X-ray diffraction technology in experimental teaching of forestry[J]. J Ningxia Univ (Nat Sci Ed), 2018, 39(1): 94-96. | |
2 | 李霞, 滕晓云. X射线衍射原理及在材料分析中的应用[J]. 物理通报, 2008, 9: 58-59. |
LI X, TENG X Y. X-ray diffraction principle and its application in material analysis[J]. Phys Bull, 2008, 9: 58-59. | |
3 | 黄超, 张双权. X射线衍射技术在烧骨实验研究中的初步应用[J]. 人类学学报, 2021, 40(3): 513-525. |
HUANG C, ZHANG S Q. Preliminary application of the X-rays diffraction technique in experimental study of burnt bones[J]. Acta Anthropologica Sin, 2021, 40(3): 513-525. | |
4 | 杨卓, 卢勇, 赵庆, 等. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023: 1-16. |
YANG Z, LU Y, ZHAO Q, et al. X-ray diffraction rietveld refinement and its application in cathode materials for lithium-ion batteries[J]. J Inorg Mater, 2023: 1-16. | |
5 | JAIN R. A review on the development of XRD in ferrite nanoparticles[J]. J Supercond Nov Magn, 2022, 35(5): 1033-1047. |
6 | MORADI A, PAKIZEH M, GHASSEMI T. A review on bovine hydroxyapatite;extraction and characterization[J]. Biomed Phys Eng Expr, 2021, 8(1): 012001. |
7 | 解瑞辉, 杨坤, 郭社民, 等. 从“人、机、料、法、环”谈地市食品药品检验检测实验室建设的几点建议[J]. 首都食品与医药, 2020, 27(10): 103-104. |
XIE R H, YANG K, GUO S M, et al. Some suggestions on the construction of food and drug inspection and testing laboratories in prefectures and cities from the perspective of “man, machine, material, method and environment”[J]. Capital Food Med, 2020, 27(10): 103-104. | |
8 | YANTI P, PEBRIANTI R. Microwave-assisted of synthesis and characterization of nanocomposite hydroxyapatite-chitosan[J]. J Phys: Conf Ser, 2021, 1842: 012048. |
9 | HE D H, ZHANG X X, LIU P, et al. Effect of hydrothermal treatment temperature on the hydroxyapatite coatings deposited by electrochemical method[J]. Surface Coat Technol, 2021, 406: 126656. |
10 | NUR A A H, MOHD Z H, MOHD K K. Nanomaterials-upconverted hydroxyapatite for bone tissue engineering and a platform for drug delivery[J]. Int J Nanomed, 2021, 16: 6477-6496. |
11 | NINGRUM E, PRATIWI E, SHAFFITRI I, et al. Production of bone implant filaments from blue crab shells (Portunus pelagicus) in various synthesis conditions and blending ratios of hydroxyapatite (HAp)-polycaprolactone (PCL)[J]. IOP Conf Ser: Earth Environ Sci, 2022, 963: 012021. |
12 | COTRUT C M, VLADESCU A, DINU M, et al. Influence of deposition temperature on the properties of hydroxyapatite obtained by electrochemical assisted deposition[J]. Ceram Int, 2018, 44(1): 669-677. |
13 | TARGONSKA S, DOMINIAK S, WIGLUSZ R J, et al. Investigation of different types of micro- and nanostructured materials for bone grafting application[J]. Nanomaterials, 2022, 12(21): 3752. |
14 | AVINASHI S K, SINGH P, SHARMA K, et al. Morphological, mechanical, and biological evolution of pure hydroxyapatite and its composites with titanium carbide for biomedical applications[J]. Ceram Int, 2022, 48(13): 18475-18489. |
15 | TAN W L, MCNEILL C R. X-ray diffraction of photovoltaic perovskites: principles and applications[J]. Appl Phys Rev, 2022, 9: 021310-021382. |
16 | PADRELA L, AZEVEDO E G, VELAGA S P. Powder X-ray diffraction method for the quantification of cocrystals in the crystallization mixture[J]. Drug Dev Ind Pharm, 2011, 38(8): 923-929. |
17 | ROBERTS S N, WILLIAMS A C, GRIMSEY I M, et al. Quantitative analysis of mannitol polymorphs. X-ray powder diffractometry-exploring preferred orientation effects[J]. J Pharm Biomed Anal, 2002, 28(6): 1149-1159. |
18 | LANDERS A T, KOSHY D M, LEE S H, et al. A refraction correction for buried interfaces applied to in situ grazing-incidence X-ray diffraction studies on Pd electrodes[J]. J Synchrotron Radiat, 2021, 28: 919-923. |
19 | PANDEY A, DALAL S, DUTTA S, et al. Structural characterization of polycrystalline thin films by X-ray diffraction techniques[J]. J Mater Sci-Mater El, 2021, 32(2): 1341-1368. |
20 | 张杰. 多晶X射线衍射测量结果的一些影响因素[J]. 分析测试技术与仪器, 2009, 15(3): 182-184. |
ZHANG J. Some influencing factors of polycrystalline X-ray diffraction measurement results[J]. Anal Test Technol Instrum, 2009, 15(3): 182-184. | |
21 | 孙晓君, 井立强, 徐跃, 等. ZnO纳米粒子制备过程中XRD的研究[J]. 哈尔滨工业大学学报, 2001, 33(3): 381-384. |
SUN X J, JING L Q, XU Y, et al. Study on XRD during preparation of ZnO nanoparticles[J]. J Harbin Instit Technol, 2001, 33(3): 381-384. | |
22 | MOREIRA L B, TAO S, CULBERTSON E, et al. Evaluation of the polymorphic forms of Ritonavir and Lopinavir in raw materials and co-milled systems[J]. Int J Pharmaceut, 2022, 628: 122329. |
23 | 马礼敦. X射线粉末衍射少量试样的试样板制作[J]. 理化检验(物理分册), 2011, 47(3): 146-150. |
MA L D. Specimen plate preparation for a little amount specimen in X-ray power diffraction[J]. Phys Test Chem Anal Part A: Phys Test, 2011, 47(3): 146-150. | |
24 | 王弘德, 孙莹, 袁秀良, 等. XRD实验中样品台高度对测定晶格常数的影响[J]. 大学物理, 2022, 41: 28-31. |
WANG H D, SUN Y, YUAN X L, et al. Effect of sample stage height on the determination of lattice constantsin XRD experiments[J]. College Phys, 2022, 41: 28-31. | |
25 | 詹美燕, 李春明. X射线衍射测试样品位置对谱线峰位和强度的影响[J]. 分析测试技术与仪器, 2020, 26(2): 132-137. |
ZHAN M Y, LI C M. Effects of sample position on peak position and intensity of spectrum during X-ray diffraction test[J]. Anal Test Technol Instrum, 2020, 26(2): 132-137. | |
26 | CHERNOCK P, BECK P A, 黄清珠. X射线反射法定量测定择优取向中的误差分析[J]. 钢铁研究情报, 1978(Z1): 46-51. |
CHERNOCK P, BECK P A, HUANG Q Z. Error analysis in quantitative determination of preferred orientation by X-ray reflectometry[J]. Res Iron Steel, 1978(Z1): 46-51. | |
27 | 左良, 梁志德. X射线反射法定量测建极图时狭缝系统的合理选择[J]. 理化检验: 物理分册, 1988, 24(1): 39-41. |
ZUO L, LIANG Z D. Reasonable selection of slit system for quantitative measurement and construction of pole figure by X-ray reflectometry[J]. Phys Test Chem Anal Part A: Phys Test, 1988, 24(1): 39-41. | |
28 | MILATHIANAKI D, BOUTET S, WILLIAMS G J, et al. Femtosecond visualization of lattice dynamics in shock-compressed matter[J]. Science, 2013, 342(6155): 220-223. |
29 | 魏旭, 张兵兵, 孙大睿, 等. 北京同步辐射高重频超快X射线衍射实验方法发展[J]. 核技术, 2017, 40(10): 5-10. |
WEI X, ZHANG B B, SUN D R, et al. Ultrafast X-ray diffraction development at high repetition rate in Beijing synchrotron radiation facility[J]. Nucl Tech, 2017, 40(10): 5-10. | |
30 | 刘欣慰, 刘海广, 张文凯. X射线自由电子激光及其在超快结构动力学研究中的应用[J]. 中国科学: 物理学、力学、天文学, 2022, 52(7): 191-214. |
LIU X W, LIU H G, ZHANG W K, X-ray free-electron lasers and their applications in ultrafast structural dynamics research[J]. Sci Sin (Phys, Mech & Astron), 2022, 52(7): 191-214. | |
31 | 张万群, 邵伟, 杨凯平, 等. 二氧化钛相变的原位高温X射线衍射分析——介绍一个仪器分析拓展性实验[J]. 大学化学, 2022, 38: 1-6. |
ZHANG W Q, SHAO W, YANG K P, et al. In-situ high-temperature X-ray diffraction study of titanium dioxide phase transformation- an extended instrumental analysis experiment[J]. Univ Chem, 2022, 38: 1-6. | |
32 | 张楠王, 王河锦, 王冠玉. 赤铁矿高温原位X射线衍射研究[J]. 岩石矿物学杂志, 2017, 36(1): 89-95. |
ZHANG N W, WANG H J, WANG G Y. In situ high temperature X-ray diffraction study of hematite[J]. Acta Petrologica et Mineralogica, 2017, 36(1): 89-95. | |
33 | 董襄朝. 低温X射线晶体衍射法在生物大分子结构分析中的应用[J]. 结构化学, 2001, 20(4): 245-248. |
DONG X C. Application of low temperature X-ray crystal diffraction method in structure analysis of biological macromolecules[J]. Chin J Struct Chem, 2001, 20(4): 245-248. |
[1] | 范志恒, 周莉, 欧阳君君, 罗仲宽, 李妙妙. 化学-物理法制备聚乙烯醇/壳聚糖/纳米羟基磷灰石复合水凝胶及其性能[J]. 应用化学, 2014, 31(01): 61-64. |
[2] | 何雪蕾, 萧聪明. 乳酸基聚氨酯与羟基磷灰石的共价杂化[J]. 应用化学, 2013, 30(08): 883-887. |
[3] | 张岚, 黄紫洋. 造孔剂对电泳沉积制备多孔HA涂层及其生物活性的影响[J]. 应用化学, 2012, 29(01): 46-51. |
[4] | 于化江, 武克忠. 四氯合锌酸十六烷基铵-四氯合锌酸十八烷基铵二元体系亚固相相图[J]. 应用化学, 2012, 29(01): 113-117. |
[5] | 徐惠,刘小育,范宗良,张斯凡,苟国俊. HAP/P(MMA-St)复合微球的制备及其吸附性能[J]. 应用化学, 2010, 27(03): 276-279. |
[6] | 周红英,王建华,隋鹏,孙印石,房信胜. 半夏淀粉的理化特性[J]. 应用化学, 2010, 27(01): 117-121. |
[7] | 唐文清. 不同Ca/P比碳羟基磷灰石对Cu2+的吸附特性研究[J]. 应用化学, 2009, 26(07): 807-810. |
[8] | 张大海, 李先国, 孙炳华. 天然产物葡萄孢酮立体构型的解析[J]. 应用化学, 2008, 25(12): 1425-1429. |
[9] | 徐惠, 张斯凡, 刘小育, 苟国俊. 水热合成微孔纳米羟基磷灰石[J]. 应用化学, 2008, 25(11): 1255-1258. |
[10] | 余晓阳, 吴霞琴, 张凡, 廖慧, 杨仕平, 章宗穰. 电沉积PAMAM/羟基磷灰石复合涂层的研究[J]. 应用化学, 2006, 23(9): 970-973. |
[11] | 宋志刚, 王建华, 王汉忠, 赵爱红, 刘春晓, 田纪春. 粉葛淀粉的理化特性[J]. 应用化学, 2006, 23(9): 974-977. |
[12] | 刘榕芳, 肖秀峰. 羟基磷灰石/氧化锆复合涂层的水热电沉积及其性能[J]. 应用化学, 2006, 23(6): 612-616. |
[13] | 李学静, Christian Quellet, Claire Vautrin, 田禾. 层状液晶乳液的相行为[J]. 应用化学, 2006, 23(10): 1150-1155. |
[14] | 王华林, 李延红, 史铁钧, 盛敏刚, 翟林峰, 王继植. 可降解聚乳酸/羟基磷灰石杂化材料Ⅰ.纳米羟基磷灰石的合成[J]. 应用化学, 2005, 22(9): 976-979. |
[15] | 周虹屏, 郝扶影, 张居舟, 赵祖志, 李东梅, 吴杰颖, 田玉鹏, Hoong-Kun Fund. 一种具有双光子活性的新型吡啶盐的合成、表征及性质[J]. 应用化学, 2005, 22(6): 610-614. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||