1 |
ZHANG N Q, LI L C, GUO Y Z, et al. A MnO2-based catalyst with H2O resistance for NH3-SCR: study of catalytic activity and reactants-H2O competitive adsorption[J]. Appl Catal B: Environ, 2020, 270: 118860.
|
2 |
ZHAN S H, QIU M Y, YANG S S, et al. Facile preparation of MnO2 doped Fe2O3 hollow nanofibers for low temperature SCR of NO with NH3[J]. J Mater Chem A, 2014, 2(48): 20486-20493.
|
3 |
YU S H, LU Y Y, GAO F, et al. Study on the crystal plane effect of CuO/TiO2 catalysts in NH3-SCR reaction[J]. Catal Today, 2020, 339: 265-273.
|
4 |
LIETTI L L, ALEMANY J N, FERLAZZO FORZATTI P, et al. Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx catalysts[J]. J Catal, 1995, 155: 117-130.
|
5 |
ZHOU X M, HUANG X Y, XIE A J, et al. V2O5-decorated Mn-Fe/attapulgite catalyst with high SO2 tolerance for SCR of NOx with NH3 at low temperature[J]. Chem Eng J, 2017, 326: 1074-1085.
|
6 |
ZHANG R D, LUO N, YANG W, et al. Low-temperature selective catalytic reduction of NO with NH3 using perovskite-type oxides as the novel catalysts[J]. J Mol Catal A: Chem, 2013, 371: 86-93.
|
7 |
LYUMENG Y, LU P, CHEN X B, et al. The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst [J]. Appl Catal B: Environ, 2020, 277: 119257.
|
8 |
YANG B, JIN Q J, HUANG Q, et al. Synergetic catalytic removal of chlorobenzene and NO from waste incineration exhaust over MnNb0.4Ce0.2O catalysts: performance and mechanism study[J]. J Rare Earths, 2020, 38(11): 1178-1189.
|
9 |
WANG X Y, LAN Z X, ZHANG K, et al. Structure-activity relationships of AMn2O4 (A=Cu and Co) spinels in selective catalytic reduction of NOx: experimental and theoretical study[J]. J Phys Chem C, 2017, 121(6): 3339-3349.
|
10 |
ZHANG Q L, ZHANG Y Q, ZHANG T X, et al. Influence of preparation methods on iron-tungsten composite catalyst for NH3-SCR of NO: the active sites and reaction mechanism[J]. Appl Surf Sci, 2020, 503: 190-202.
|
11 |
YU C, HOU D, HUANG B, et al. A MnOx@Eu-CeOx nanorod catalyst with multiple protective effects: strong SO2-tolerance for low temperature DeNOx processes[J]. J Hazard Mater, 2020, 399: 123011.
|
12 |
YOU X C, SHENG Z Y, YU D Q, et al. Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnOx-CeO2 oxides for NH3-SCR at low temperature[J]. Appl Surf Sci, 2017, 423: 845-854.
|
13 |
DONOVAN A P, UPHADE B S, SMIRNIOTIS P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3. evaluation and characterization of first row transition metals[J]. J Catal, 2004, 221(2): 421-431.
|
14 |
LIU L, WANG B D, YAO X J, et al. Highly efficient MnOx/biochar catalysts obtained by air oxidation for low-temperature NH3-SCR of NO[J]. Fuel, 2021, 283: 119336.
|
15 |
SINGH P P, THATIKONDA T, KUMAR K A, et al. Cu-Mn spinel oxide catalyzed regioselective halogenation of phenols and N-heteroarenes[J]. Org Chem, 2012, 77: 5823-5828.
|
16 |
GAO F Y, TANG X L, SANI Z D, et al. Spinel-structured Mn-Ni nanosheets for NH3-SCR of NO with good H2O and SO2 resistance at low temperature[J]. Catal Sci Technol, 2020, 10(22): 7486-7501.
|
17 |
KANG M, YEON T H, PARK E D, et al. Novel MnOx catalysts for NO reduction at low temperature with ammonia[J]. Catal Lett, 2006, 106(1/2): 77-80.
|
18 |
LIU C, SHI J W, GAO C, et al. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: a review[J]. Appl Catal B: General, 2016, 522: 54-69.
|
19 |
KIM K J, LEE J H, KOH T Y, et al. Improved cyclic stability by octahedral Co3+ substitution in spinel lithium manganese oxide thin-film cathode for rechargeable microbattery[J]. Electrochim Acta, 2016, 200: 84-89.
|
20 |
QI F H, XIONG S C, LIAO Y, et al. A novel dual layer SCR catalyst with a broad temperature window for the control of NO emission from diesel bus[J]. Catal Commun, 2015, 65: 108-112.
|
21 |
QI G S, YANG R T, et al. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. J Catal, 2003, 217(2): 434-441.
|
22 |
JONG H L, SCHMIEG S J, OH SE H. Improved NOx reduction over the staged Ag/Al2O3 catalyst system[J]. Appl Catal A: General, 2008, 342(1/2): 78-86.
|
23 |
HAN L, CAI S, GAO M, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects[J]. Chem Rev, 2019, 119(19): 10916-10976.
|
24 |
GAO F Y, TANG X L, YI H H, et al. Improvement of activity, selectivity and H2O&SO2-tolerance of micro-mesoporous CrMn2O4 spinel catalyst for low-temperature NH3-SCR of NOx[J]. Appl Surf Sci, 2019, 466: 411-424.
|
25 |
GAO F Y, TANG X L, YI H H, et al. In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO2, β-MnO2 and γ-MnO2 catalysts[J]. Chem Eng J, 2017, 322: 525-537.
|
26 |
LIAM J F, YANG Q, LI W, et al. Ceria modified FeMnO—enhanced performance and sulphur resistance for low-temperature SCR of NOx[J]. Appl Catal B: Environ, 2017, 206: 203-215.
|
27 |
YI T, LI J W, ZHANG Y B, et al. A novel nano-sized catalyst CeO2-CuO/hollow ZSM-5 for NOx reduction with NH3[J]. Chem Res Chin Univ, 2018, 34(4): 661-664.
|
28 |
JIANG B, DENG B, ZHANG Z, et al. Effect of Zr addition on the low-temperature SCR activity and SO2 tolerance of Fe-Mn/Ti catalysts[J]. J Phys Chem C, 2014, 118: 14866-14875.
|