应用化学 ›› 2023, Vol. 40 ›› Issue (2): 288-298.DOI: 10.19894/j.issn.1000-0518.220169
收稿日期:
2022-05-06
接受日期:
2022-11-06
出版日期:
2023-02-01
发布日期:
2023-02-27
通讯作者:
郏建波
基金资助:
Qian YANG, Yang ZHANG, Ming-Yang LAI, Lin GUO, Jian-Bo JIA()
Received:
2022-05-06
Accepted:
2022-11-06
Published:
2023-02-01
Online:
2023-02-27
Contact:
Jian-Bo JIA
About author:
jbjiagu@163.comSupported by:
摘要:
以水稻秸秆为原材料,采用一步磁化碳化法,于550、600、650和700 ℃下进行限氧裂解,制备出4种高效易分离的磁性生物炭(MBC-550、MBC-600、MBC-650和MBC-700)。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、比表面孔径分布分析仪(BET)和傅里叶变换红外光谱仪(FT-IR)对其理化性质进行了表征,探究了不同温度对其结构性质和吸附性能的影响。而后研究了MBC对罗丹明B(RhB)的吸附动力学、吸附等温线,并考察了pH值和金属阳离子(Na+、Fe3+、Mg2+和Cu2+)对吸附性能的影响。结果表明,随着热解温度升高,MBC的比表面积和孔容积增大,MBC的吸附性能受温度影响显著。在30 ℃时,4种不同热解温度制备的MBC对RhB的平衡吸附量分别为35.696、36.962、53.118和54.810 mg/g。4种MBC对RhB的吸附均符合伪二级动力学方程,表明MBC对RhB的吸附受多种因素影响;采用Langmuir与Freundlich方程对等温吸附结果进行拟合,吸附等温线符合Freundlich模型,表明MBC对RhB吸附以多分子层物理吸附为主。由于静电吸附和离子交换的作用,MBC对RhB的吸附容量随pH值的升高先增大后减小,在pH值为6时吸附容量达到最大;加入Na+、Fe3+、Cu2+和Mg2+金属阳离子后,4种MBC对RhB的吸附量均低于平衡吸附量:Na+、Fe3+离子浓度的升高对部分MBC吸附RhB的容量呈一定的上升趋势,而Cu2+、Mg2+离子浓度的升高对MBC吸附RhB影响较小。
中图分类号:
杨倩, 张杨, 赖明阳, 郭琳, 郏建波. 不同热解温度下制备的磁性生物炭对罗丹明B的吸附性能[J]. 应用化学, 2023, 40(2): 288-298.
Qian YANG, Yang ZHANG, Ming-Yang LAI, Lin GUO, Jian-Bo JIA. Adsorption Performance of Rhodamine B on Magnetic Biochar Prepared at Different Pyrolysis Temperatures[J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 288-298.
Pyrolysis temperature/℃ | BET surface area/(m2·g-1) | Total pore volume/(cm3·g-1) | Micropore volume/(cm3·g-1) | Micropore area/(m2·g-1) |
---|---|---|---|---|
550 | 314.779 | 0.123 | 0.121 | 260.450 |
600 | 331.710 | 0.137 | 0.119 | 257.683 |
650 | 418.436 | 0.172 | 0.151 | 327.129 |
700 | 427.418 | 0.211 | 0.120 | 261.633 |
表1 不同热解温度制备的MBC孔隙状况的变化
Table 1 Variation of pores of MBC prepared at different pyrolysis temperatures
Pyrolysis temperature/℃ | BET surface area/(m2·g-1) | Total pore volume/(cm3·g-1) | Micropore volume/(cm3·g-1) | Micropore area/(m2·g-1) |
---|---|---|---|---|
550 | 314.779 | 0.123 | 0.121 | 260.450 |
600 | 331.710 | 0.137 | 0.119 | 257.683 |
650 | 418.436 | 0.172 | 0.151 | 327.129 |
700 | 427.418 | 0.211 | 0.120 | 261.633 |
图5 不同热解温度MBC对RhB的吸附动力学拟合(A); MBC-550的磁分离试验(B)
Fig.5 Kinetic fitting of RhB adsorption by MBC at different pyrolysis temperatures (A); Magnetic separation test of MBC-550 (B)
MBC | qe(exp)/(mg·g-1) | Pseudo first-order kinetic model | Pseudo second-order kinetic model | ||||
---|---|---|---|---|---|---|---|
qe(cal)/(mg·g-1) | K1/min-1 | R2 | qe(cal)/(mg·g-1) | K2/min-1 | R2 | ||
MBC-550 | 35.696 | 34.604 | 2.096 | 0.978 | 34.967 | 0.167 | 0.990 |
MBC-600 | 36.962 | 36.455 | 1.955 | 0.981 | 36.838 | 0.146 | 0.993 |
MBC-650 | 53.118 | 51.039 | 1.110 | 0.967 | 51.971 | 0.042 | 0.990 |
MBC-700 | 54.810 | 52.827 | 0.972 | 0.984 | 53.755 | 0.036 | 0.995 |
表2 MBC吸附RhB的动力学参数
Table 2 Kinetics parameters for adsorption of RhB by MBC
MBC | qe(exp)/(mg·g-1) | Pseudo first-order kinetic model | Pseudo second-order kinetic model | ||||
---|---|---|---|---|---|---|---|
qe(cal)/(mg·g-1) | K1/min-1 | R2 | qe(cal)/(mg·g-1) | K2/min-1 | R2 | ||
MBC-550 | 35.696 | 34.604 | 2.096 | 0.978 | 34.967 | 0.167 | 0.990 |
MBC-600 | 36.962 | 36.455 | 1.955 | 0.981 | 36.838 | 0.146 | 0.993 |
MBC-650 | 53.118 | 51.039 | 1.110 | 0.967 | 51.971 | 0.042 | 0.990 |
MBC-700 | 54.810 | 52.827 | 0.972 | 0.984 | 53.755 | 0.036 | 0.995 |
MBC | T/℃ | Freundlich isotherm model | Langmuir isotherm model | ||||
---|---|---|---|---|---|---|---|
KF | N | R2 | qmax/(mg·g-1) | KL | R2 | ||
MBC-550 | 20 | 2.224 | 2.496 | 0.999 | 20.594 | 0.026 | 0.962 |
30 | 2.272 | 1.995 | 0.993 | 36.558 | 0.015 | 0.973 | |
40 | 2.962 | 3.322 | 0.979 | 14.637 | 0.052 | 0.954 | |
MBC-600 | 20 | 2.704 | 2.645 | 0.995 | 21.566 | 0.030 | 0.935 |
30 | 3.684 | 2.402 | 0.993 | 40.203 | 0.026 | 0.976 | |
40 | 2.956 | 3.067 | 0.981 | 16.961 | 0.043 | 0.871 | |
MBC-650 | 20 | 11.283 | 3.313 | 0.990 | 49.978 | 0.090 | 0.929 |
30 | 13.760 | 3.547 | 0.991 | 54.975 | 0.116 | 0.899 | |
40 | 14.795 | 3.906 | 0.971 | 49.343 | 0.180 | 0.935 | |
MBC-700 | 20 | 12.554 | 3.318 | 0.991 | 53.779 | 0.102 | 0.893 |
30 | 16.993 | 3.496 | 0.990 | 68.877 | 0.108 | 0.937 | |
40 | 15.660 | 3.509 | 0.980 | 59.61 | 0.146 | 0.940 |
表3 MBC 吸附 RhB 的 Langmuir 和 Freundlich 吸附等温线参数
Table 3 Langmuir and Freundlich adsorption isotherm constants for adsorption of RhB by MBC
MBC | T/℃ | Freundlich isotherm model | Langmuir isotherm model | ||||
---|---|---|---|---|---|---|---|
KF | N | R2 | qmax/(mg·g-1) | KL | R2 | ||
MBC-550 | 20 | 2.224 | 2.496 | 0.999 | 20.594 | 0.026 | 0.962 |
30 | 2.272 | 1.995 | 0.993 | 36.558 | 0.015 | 0.973 | |
40 | 2.962 | 3.322 | 0.979 | 14.637 | 0.052 | 0.954 | |
MBC-600 | 20 | 2.704 | 2.645 | 0.995 | 21.566 | 0.030 | 0.935 |
30 | 3.684 | 2.402 | 0.993 | 40.203 | 0.026 | 0.976 | |
40 | 2.956 | 3.067 | 0.981 | 16.961 | 0.043 | 0.871 | |
MBC-650 | 20 | 11.283 | 3.313 | 0.990 | 49.978 | 0.090 | 0.929 |
30 | 13.760 | 3.547 | 0.991 | 54.975 | 0.116 | 0.899 | |
40 | 14.795 | 3.906 | 0.971 | 49.343 | 0.180 | 0.935 | |
MBC-700 | 20 | 12.554 | 3.318 | 0.991 | 53.779 | 0.102 | 0.893 |
30 | 16.993 | 3.496 | 0.990 | 68.877 | 0.108 | 0.937 | |
40 | 15.660 | 3.509 | 0.980 | 59.61 | 0.146 | 0.940 |
图6 不同热解温度MBC对RhB的吸附等温线拟合(A);外界温度对MBC吸附的影响(B)
Fig.6 Fitting of the adsorption isotherms of RhB by MBC at different pyrolysis temperatures (A); The influence of external temperature on the adsorption of MBC (B)
MBC | ΔG/(kJ·mol-1) | ΔH/(kJ·mol-1) | ΔS/(kJ·mol-1) | ||
---|---|---|---|---|---|
20 ℃ | 30 ℃ | 40 ℃ | |||
MBC-550 | -3.807 | -4.175 | -5.950 | -38.345 | 24.545 |
MBC-600 | -4.793 | -5.492 | -5.737 | -59.762 | 43.872 |
MBC-650 | -8.821 | -9.794 | -10.557 | -23.631 | 4.717 |
MBC-700 | -9.085 | -10.289 | -10.426 | -12.266 | 6.742 |
表4 MBC吸附RhB的热力学参数
Table 4 Thermodynamic parameters of RhB adsorption onto MBC
MBC | ΔG/(kJ·mol-1) | ΔH/(kJ·mol-1) | ΔS/(kJ·mol-1) | ||
---|---|---|---|---|---|
20 ℃ | 30 ℃ | 40 ℃ | |||
MBC-550 | -3.807 | -4.175 | -5.950 | -38.345 | 24.545 |
MBC-600 | -4.793 | -5.492 | -5.737 | -59.762 | 43.872 |
MBC-650 | -8.821 | -9.794 | -10.557 | -23.631 | 4.717 |
MBC-700 | -9.085 | -10.289 | -10.426 | -12.266 | 6.742 |
1 | YAN S C, LI Z S, ZOU Z G. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation[J]. Langmuir, 2010, 26(6): 3894-3901. |
2 | AL-KAZRAGI M A, Al-HEETIMI D T A. Removal of toxic dye (rhodamine B) from aqueous solutions by natural smectite (SMC) and SMC-nanoTiO2[J]. Desalin Water Treat, 2021, 230: 276-287. |
3 | CADENBACH T, BENITEZ M J, TIRADO S A, et al. Adsorption enhanced photocatalytic degradation of rhodamine B using GdxBi1- xFeO3@SBA-15 (x=0, 0.05, 0.10, 0.15) nanocomposites under visible light irradiation[J]. Ceram Int, 2021, 47(20): 29139-29148. |
4 | REN Z G, CHEN F, WANG B, et al. Magnetic biochar from alkali-activated rice straw for removal of rhodamine B from aqueous solution[J]. Environ Eng Res, 2020, 25(4): 536-544. |
5 | WANG J, LIAO Z W, IFTHIKAR J, et al. One-step preparation and application of magnetic sludge-derived biochar on acid orange 7 removal via both adsorption and persulfate based oxidation[J]. RSC Adv, 2017, 7(30): 18696-18706. |
6 | FROHLICH A C, FOLETTO E L, DOTTO G L. Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions[J]. J Clean Prod, 2019, 229: 828-837. |
7 | YAO X X, JI L L, GUO J, et al. Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption[J]. Bioresour Technol, 2020, 302: 8. |
8 | 陈芳, 赵国平, 莫尊理. 石墨烯/Fe3O4/TiO2磁性纳米复合材料的光催化性能研究[J]. 人工晶体学报, 2016, 45(12): 2795-2800, 2806. |
CHEN F, ZHAO G P, MO Z L. Photocatalytic performance study of graphene/Fe3O4/TiO2 magnetic nanocomposites[J]. J Synth Cryst, 2016, 45 (12): 2795-2800, 2806. | |
9 | SUN P, HUI C, AZIM K R, et al. Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior[J]. Sci Rep, 2015, 5: 12638. |
10 | NGUYEN V H, NGUYEN D T, NGUYEN T T, et al. Activated carbon with ultrahigh surface area derived from sawdust biowaste for the removal of rhodamine B in water[J]. Environ Technol Innov, 2021, 24: 101811. |
11 | CHEN F H, LIANG W W, QIN X Y, et al. Preparation and recycled simultaneous adsorption of methylene blue and Cu2+ co-pollutants over carbon layer encapsulated Fe3O4/graphene oxide nanocomposites rich in amino and thiol groups[J]. Colloids Surf A, 2021, 625: 13. |
12 | WANG Z X, ZHOU Q H, CHEN S J, et al. Preparation of a quinoa straw-derived porous carbon material and a Fe3O4-contained composite material for removal of rhodamine B from water[J]. Mater Res Express, 2020, 7(12): 16. |
13 | OLADIPO A A, IFEBAJO A O. Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: two-stage adsorber analysis[J]. J Environ Manage, 2018, 209: 9-16. |
14 | SAFARIK I, BALDIKOVA E, PROCHAZKOVA J, et al. Magnetically modified agricultural and food waste: preparation and application[J]. J Agric Food Chem, 2018, 66 (11): 2538-2552. |
15 | 汪燕南, 李文文, 孙运飞, 等. 改性甘蔗渣去除模拟废水中孔雀石绿的研究[J]. 环境工程技术学报, 2016, 6(5): 434-439. |
WANG Y L, LI W W, SUN Y F, et al. Removal of malachite green from simulated wastewater by modified sugarcane bagasse[J]. J Environ Eng Technol, 2016, 6(5): 434-439. | |
16 | 江美琳, 金辉, 邓聪, 等. 生物炭负载Fe3O4纳米粒子的制备与表征[J]. 农业环境科学学报, 2018, 37(3): 592-597. |
JIANG M L, JIN H, DENG C, et al. Preparation and characterization of biochar-loaded Fe3O4 nanoparticles[J]. J Agro Environ Sci, 2018, 37(0): 592-597. | |
17 | 魏太庆, 王博, 艾丹, 等. 磁性生物炭的制备及其在环境修复中的研究进展[J]. 功能材料, 2021, 52(10): 10039-10047. |
WEI T Q, WANG B, AI D, et al. Preparation of magnetic biochar and its research progress in environmental remediation[J]. J Funct Mater, 2021, 52(10): 10039-10047. | |
18 | 林珈羽, 张越, 刘沅, 等. 不同原料和炭化温度下制备的生物炭结构及性质[J]. 环境工程学报, 2016, 10(6): 3200-3206. |
LIN J Y, ZHANG Y, LIU Y, et al. Structure and properties of biochar prepared with different raw materials and charring temperatures[J]. J Environ Eng, 2016, 10(6): 3200-3206. | |
19 | 简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响[J]. 环境科学学报, 2016, 36(5): 1757-1765. |
JIAN M F, GAO K F, YU H P. Effects of different cracking temperatures on the preparation and properties of biochar from rice straw[J]. Acta Sci Circum, 2016, 36(5): 1757-1765. | |
20 | 韦思业, 宋建中, 彭平安, 等. 不同温度制备生物炭的热解产物特征[J]. 地球化学, 2019, 48(5): 511-520. |
WEI S Y, SONG J C, PENG P A, et al. Characterization of pyrolysis products of biochar prepared at different temperatures[J]. Geochimica, 2019, 48(5): 511-520. | |
21 | 徐亮, 王豹祥, 汪健, 等. 不同热解温度制备的水稻秸秆生物炭理化特性分析[J]. 土壤通报, 2020, 51(1):136-143. |
XU L, WANG B X, WANG J, et al. Analysis of physicochemical properties of rice straw biochar prepared at different pyrolysis temperatures[J]. Chin J Soil Sci, 2020, 51(1): 136-143. | |
22 | 任爱玲, 王启山, 郭斌. 污泥活性炭的结构特征及表面分形分析[J]. 化学学报, 2006, 64(10): 1068-1072. |
REN A L, WANG Q S, GUO B. Structure characterization and surface fractal analysis of sludge activated carbon[J]. Acta Chim Sin, 2006, 64 (10): 1068-1072. | |
23 | NGUYEN B T, LEHMANN J. Black carbon decomposition undervarying water regimes[J]. Org Geochem, 2009, 40(8): 846-853. |
24 | 高凯芳, 简敏菲, 余厚平, 等. 裂解温度对稻秆与稻壳制备生物炭表面官能团的影响[J]. 环境化学, 2016, 35(8): 1663-1669. |
GAO K F, KAN M F, YU H P, et al. Effect of cracking temperature on the surface functional groups of biochar prepared from rice straw and rice husk[J]. Environ Chem, 2016, 35(8): 1663-1669. | |
25 | SHRESTHA D. Efficiency of wood-dust of dalbergia sisoo as low-cost adsorbent for rhodamine-B dye removal[J]. Nanomaterials-Basel, 2021, 11 (9): 2217. |
26 | SADEGH N, HADDADI H, ARABKHANI P, et al. Simultaneous elimination of rhodamine B and malachite green dyes from the aqueous sample with magnetic reduced graphene oxide nanocomposite: optimization using experimental design[J]. J Mol Liq, 2021, 343: 117710. |
27 | 常帅帅, 张学杨, 王洪波, 等. 秸秆生物炭对Pb2+的吸附性能及影响因素研究[J]. 环境科技, 2019, 32(6): 23-28. |
CHANG S S, ZHANG X Y, WANG H B, et al. Study on adsorption performance of straw biochar on Pb2+ and influencing factors[J]. Environl Tech, 2019, 32(6): 23-28. | |
28 | 李艳春, 张鹏会, 张强, 等. 4种生物炭对阳离子染料吸附性能[J]. 环境科学与技术, 2020, 43(7): 101-110. |
LI Y C, ZHANG P H, ZHANG Q, et al. Adsorption performance of four biochar species on cationic dyes[J]. Environ Sci Tech, 2020, 43(7): 101-110. | |
29 | 温嘉伟, 王辉, 张浩, 等. 改性棕榈树纤维生物质炭的制备及其对溶液中Pb2+的吸附性能分析[J]. 农业环境科学学报, 2021, 40(5): 1088-1096. |
WEN J W, WANG H, ZHANG H, et al. Preparation of modified palm fiber biochars and their adsorption of Pb2+ in solution[J]. J Agro-Environ Sci, 2021, 40(5): 1088-1096. | |
30 | 白书立, 陈凯, 李换英, 等. ZIF-8吸附罗丹明B模拟废水热力学和动力学研究[J]. 河南师范大学学报(自然科学版), 2020, 48(4): 73-77. |
BAI S L, CHEN K, LI H Y, et al. Thermodynamic and kinetic study of ZIF-8 adsorption on rhodamine B simulated wastewater[J]. J Henan Norm Univ (Nat Sci Ed), 2020, 48(4): 73-77. | |
31 | DHINA F K B, NASSRALLAH N, CHOUKCHOU-BRAHAM A, et al. Use of Pistacia lentiscus leaves, after extraction of their oil, as a new biosorbent for the removal of dyes from water[J]. Euro-Mediterr J Environ Integrat, 2021, 6(2): 18. |
32 | 李艳春, 张鹏会, 王德乾, 等. 磁性银杏叶生物炭对罗丹明B的吸附特性[J]. 功能材料, 2019, 50(5): 5121-5127. |
LI Y H, ZHANG P H, WANG D Q, et al. Adsorption characteristics of rhodamine B by magnetic ginkgo biloba biochar[J]. J Funct Mater, 2019, 50(5): 5121-5127. | |
33 | 王章鸿, 郭海艳, 沈飞, 等. 热解条件对生物炭性质和氮、磷吸附性能的影响[J]. 环境科学学报, 2015, 35(9), 2805-2812. |
WANG Z H, GUO H Y, SHEN F, et al. Effect of pyrolysis conditions on the properties and nitrogen and phosphorus adsorption performance of biochar[J]. Acta Sci Circum, 2015, 35(9): 2805-2812 | |
34 | 常帅帅, 张学杨, 王洪波, 等. 木屑生物炭的制备及其对Pb2+的吸附特性研究[J]. 生物质化学工程, 2020, 54(3): 37-44. |
CHANG S S, ZHANG X Y, WANG H B, et al. Preparation of wood chip biochar and its adsorption characteristics on Pb2+[J]. Biomass Chem Eng, 2020, 54(3): 37-44. | |
35 | BELLO O S, ADEGOKE K A, INYINBOR A A, et al. Trapping rhodamine B dye using functionalized mango (Mangifera indica) pod[J]. Water Environ Res, 2021, 93(10): 2308-2328. |
[1] | 李桂水, 胡旭敏, 程丽君, 郝亮. 表面活性剂修饰碳酸氧铋的制备及光催化性能[J]. 应用化学, 2018, 35(6): 692-699. |
[2] | 王德佳, 徐勇前, 孙世国, 李红娟. 激发态分子内质子转移荧光探针的研究进展[J]. 应用化学, 2018, 35(1): 1-20. |
[3] | 王翠, 张飞云, 吕荣文, 张淑芬. 金纳米颗粒表面能量转移及巯基化合物的检测[J]. 应用化学, 2018, 35(1): 60-67. |
[4] | 王松, 李阳, 李飞, 程晓红. 不同形貌氧化锌的微波水热法制备及其光催化性能[J]. 应用化学, 2017, 34(2): 220-224. |
[5] | 黄齐, 宋昊翰, 王晓, 庞兰芳, 周艳梅. 一种2-乙酰基吡嗪-罗丹明B衍生物的合成及其对Ni2+的识别[J]. 应用化学, 2017, 34(12): 1468-1473. |
[6] | 王浩然, 杨维成, 涂亚辉, 杨超, 方超, 李美华, 罗勇, 吴范宏. 稳定同位素标记D4-罗丹明B的合成及表征[J]. 应用化学, 2016, 33(8): 939-944. |
[7] | 邹晓梅, 陈艳, 朱兴旺, 刘高鹏, 郭心玮, 雷琴, 柯小雪, 李帅星, 华英杰, 王崇太. Keggin型铬取代的磷钨杂多阴离子/二氧化钛纳米膜光催化剂的制备及可见光催化性能[J]. 应用化学, 2016, 33(3): 320-329. |
[8] | 艾力江, 吐尔地, 陈沛, 阿不都卡德尔, 阿不都克尤木, 木合塔尔, 吐尔洪. 铋掺杂介孔二氧化钛的制备及光催化动力学[J]. 应用化学, 2016, 33(2): 213-220. |
[9] | 孙琳琳, 周叶红, 王斐, 双少敏, 董川. 羧甲基-β-环糊精功能化的四氧化三铁磁性纳米复合物对罗丹明B的吸附性能[J]. 应用化学, 2015, 32(1): 110-117. |
[10] | 李梦婷, 刘海城, 曾星, 徐孝南, 邹晓梅, 华英杰, 王崇太. Keggin型铬取代杂多阴离子/D301R可见光催化性能[J]. 应用化学, 2014, 31(08): 965-970. |
[11] | 宫贵贞, 曹洪. 水稻秸秆石油醚和乙醇萃取物的组成分析[J]. 应用化学, 2014, 31(06): 726-731. |
[12] | 刘玉婷, 陈彦安, 邢彦军. 季膦-磷钨酸室温离子液体的合成及光催化降解罗丹明B[J]. 应用化学, 2014, 31(04): 431-436. |
[13] | 王瑞枝, 王真真, 张明, 李方方, 郭涵, 王爱军, 冯九菊. 室温合成片层花状氧化锌及其光催化[J]. 应用化学, 2014, 31(03): 316-322. |
[14] | 吴云霞, 黄静, 尹争志, 曾延波, 张祖磊, 李蕾. 悬浮聚合法制备罗丹明B磁性分子印迹微球及其性能[J]. 应用化学, 2013, 30(12): 1481-1488. |
[15] | 谭克俊, 吴飞, 代旭, 郑莉. 光散射/荧光比率法测定全氟辛烷磺酸[J]. 应用化学, 2013, 30(02): 220-224. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||