应用化学 ›› 2022, Vol. 39 ›› Issue (9): 1371-1381.DOI: 10.19894/j.issn.1000-0518.210329
收稿日期:
2021-07-05
接受日期:
2021-10-21
出版日期:
2022-09-01
发布日期:
2022-09-08
通讯作者:
袁黎明
作者简介:
第一联系人:共同第一作者
基金资助:
Hao FU, Wan-Qi XIONG, Zhen WANG, Ai-Hong DUAN, Li-Ming YUAN()
Received:
2021-07-05
Accepted:
2021-10-21
Published:
2022-09-01
Online:
2022-09-08
Contact:
Li-Ming YUAN
About author:
yuan_limingpd@126.comSupported by:
摘要:
共价有机骨架材料(COFs)作为一种新型的晶体多孔材料,其手性共价骨架材料在手性分离领域具有良好的应用前景。本文以1,3,5-三醛基间苯三酚(Tp)和3,3′-二硝基联苯胺(BD)反应合成出TpBD(NH2)2,并以此作为基本共价有机骨架。用(1S)-(+)-10-樟脑磺酰氯对该骨架进行衍生修饰,制备出手性共价有机骨架材料TpBD(NH2)2的(1S)-(+)-10-樟脑磺酰氯(Cam)衍生物(TpBD-1S-(+)-Cam)。结果表明,制备的手性共价有机骨架材料TpBD-1S-(+)-Cam能够分离华法林、马来酸氯苯那敏、阿替洛尔、美托洛尔、佐匹克隆、1-(9-蒽基)-2,2,2-三氟乙醇、1,2-二苯乙醇酮、酮洛芬、盐酸美西律和噻吗洛尔共10种外消旋体以及o,m,p-溴苯胺、o,m,p-碘苯胺2种苯系位置异构体,分离效果较好。该材料用作高效液相色谱固定相具有良好的开发潜力和应用价值。
中图分类号:
付豪, 熊婉淇, 王祯, 段爱红, 袁黎明. 手性樟脑衍生的共价有机骨架材料用作高效液相色谱固定相分离手性化合物[J]. 应用化学, 2022, 39(9): 1371-1381.
Hao FU, Wan-Qi XIONG, Zhen WANG, Ai-Hong DUAN, Li-Ming YUAN. Covalent Organic Framework Material Derivative of Chiral Camphor Used as High Performance Liquid Chromatography Stationary Phase for Resolution of Racemates[J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1371-1381.
流动相 Mobile phase | 样品名称 Sample | 保留因子 k1 | 保留因子 k2 | 分离因子 α | 分离度 Rs |
---|---|---|---|---|---|
V(CH3OH)∶V(H2O)=9∶1 | 华法林 Warfarin | 0.15 | 0.42 | 2.88 | 1.02 |
马来酸氯苯那敏 Chlorpheniramine maleate | 0.20 | 0.35 | 1.77 | 0.42 | |
阿替洛尔 Atenolol | 0.15 | 0.45 | 3.10 | 0.68 | |
美托洛尔 Metoprolol | 0.13 | 0.44 | 3.43 | 0.84 | |
佐匹克隆 Zopiclone | 0.47 | 0.64 | 1.35 | 0.40 | |
V(CH3(CH2)4CH3)∶V((CH3)2CHOH)=9∶1 | 1?(9?蒽基)?2,2,2?三氟乙醇 1?(9?Anthracenyl)?2,2,2?trifluoroethanol | 0.58 | 2.98 | 5.12 | 5.29 |
1,2?二苯乙醇酮 1,2?Benzophenone | 0.14 | 1.75 | 12.79 | 3.51 | |
华法林 Warfarin | 1.21 | 1.84 | 1.51 | 1.54 | |
酮洛芬 Ketoprofen | 1.03 | 3.63 | 3.53 | 4.23 | |
盐酸美西律 Mexiletine hydrochloride | 0.12 | 1.13 | 9.50 | 4.48 | |
噻吗洛尔 Timolol | 0.15 | 1.09 | 7.16 | 2.97 |
表1 色谱柱对11种手性外消旋体的拆分结果
Table 1 Resolution results of 11 kinds of chiral racemates by chromatographic column
流动相 Mobile phase | 样品名称 Sample | 保留因子 k1 | 保留因子 k2 | 分离因子 α | 分离度 Rs |
---|---|---|---|---|---|
V(CH3OH)∶V(H2O)=9∶1 | 华法林 Warfarin | 0.15 | 0.42 | 2.88 | 1.02 |
马来酸氯苯那敏 Chlorpheniramine maleate | 0.20 | 0.35 | 1.77 | 0.42 | |
阿替洛尔 Atenolol | 0.15 | 0.45 | 3.10 | 0.68 | |
美托洛尔 Metoprolol | 0.13 | 0.44 | 3.43 | 0.84 | |
佐匹克隆 Zopiclone | 0.47 | 0.64 | 1.35 | 0.40 | |
V(CH3(CH2)4CH3)∶V((CH3)2CHOH)=9∶1 | 1?(9?蒽基)?2,2,2?三氟乙醇 1?(9?Anthracenyl)?2,2,2?trifluoroethanol | 0.58 | 2.98 | 5.12 | 5.29 |
1,2?二苯乙醇酮 1,2?Benzophenone | 0.14 | 1.75 | 12.79 | 3.51 | |
华法林 Warfarin | 1.21 | 1.84 | 1.51 | 1.54 | |
酮洛芬 Ketoprofen | 1.03 | 3.63 | 3.53 | 4.23 | |
盐酸美西律 Mexiletine hydrochloride | 0.12 | 1.13 | 9.50 | 4.48 | |
噻吗洛尔 Timolol | 0.15 | 1.09 | 7.16 | 2.97 |
图7 TpBD-1S-(+)-Cam固定相对5种外消旋体的拆分图谱A.华法林; B.马来酸氯苯那敏; C.阿替洛尔; D.美托洛尔; E.佐匹克隆
Fig.7 Chromatographic resolution of 5 racemates by TpBD-1S-(+)-Cam stationary phaseA.Warfarin; B.Chlorpheniramine maleate; C.Atenolol; D.Metoprolol; E.Zopiclone
图8 TpBD-1S-(+)-Cam固定相对6种外消旋体的拆分图谱A.1?(9?蒽基)?2,2,2?三氟乙醇; B.1,2?二苯乙醇酮; C.华法林; D.酮洛芬; E.盐酸美西律; F.噻吗洛尔
Fig.8 Chromatographic resolution of 6 racemates by TpBD-1S-(+)-Cam stationary phaseA.1?(9?Anthracenyl)?2,2,2?trifluoroethanol; B.1,2?Benzophenone; C.Warfarin; D.Ketoprofen; E.Mexiletine hydrochloride; F.Timolol
图9 TpBD-1S-(+)-Cam固定相对溴苯胺(A)和碘苯胺(B)苯系位置异构体的拆分图谱
Fig.9 Resolution of two positional isomers of benzene series of bromoaniline (A) and iodoaniline (B) by TpBD-1S-(+)-Cam stationary phase
流动相 Mobile phase | 样品名称 Sample | 保留因子 k1 | 保留因子 k2 | 保留因子k3 | 分离因子 α1,2 | 分离因子 α2,3 | 分离度 Rs 1,2 | 分离度 Rs 2,3 |
---|---|---|---|---|---|---|---|---|
V(CH3(CH2)4CH3)∶V((CH3)2CHOH)=9∶1 | o,m,p?溴苯胺 o,m,p? | 1.07 | 3.43 | 4.13 | 3.21 | 1.20 | 3.14 | 0.44 |
o,m,p?碘苯胺 o,m,p?Iodoaniline | 0.97 | 3.00 | 3.59 | 3.10 | 1.20 | 2.87 | 0.46 |
表2 色谱柱对2种位置异构体的拆分结果
Table 2 Resolution of the two positional isomers by the chromatographic column
流动相 Mobile phase | 样品名称 Sample | 保留因子 k1 | 保留因子 k2 | 保留因子k3 | 分离因子 α1,2 | 分离因子 α2,3 | 分离度 Rs 1,2 | 分离度 Rs 2,3 |
---|---|---|---|---|---|---|---|---|
V(CH3(CH2)4CH3)∶V((CH3)2CHOH)=9∶1 | o,m,p?溴苯胺 o,m,p? | 1.07 | 3.43 | 4.13 | 3.21 | 1.20 | 3.14 | 0.44 |
o,m,p?碘苯胺 o,m,p?Iodoaniline | 0.97 | 3.00 | 3.59 | 3.10 | 1.20 | 2.87 | 0.46 |
图10 酮洛芬的不同进样量(2、4、6、8和10 μL)在TpBD-1S-(+)-Cam色谱柱上的分离谱图
Fig.10 Separation spectra of different injection volumes of ketoprofen (2,4,6,8,10 μL) on the TpBD-1S-(+)-Cam
图11 酮洛芬的不同温度(20、25、30、35和40 ℃)在TpBD-1S-(+)-Cam色谱柱上的分离谱图
Fig.11 Chromatographs of ketoprofen at different temperatures (20,25,30,35,40 ℃) on the column of TpBD-1S-(+)-Cam
1 | YANG H S, DU Y, WAN S, et al. Mesoporous 2D covalent organic frameworks based on shape-persistent arylene-ethynylene macrocycles[J]. Chem Sci, 2015, 6(7): 4049-4053. |
2 | CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
3 | 李路路, 刘帅, 章琴, 等. 共价有机框架材料研究进展[J].物理化学学报, 2017, 33(10): 1960-1977. |
LI L L, LIU S, ZHANG Q, et al. Research progress of covalent organic framework materials[J]. J Phys Chem, 2017, 33(10): 1960-1977. | |
4 | 王禹婷, 杨天怡, 章应辉. 卟啉框架材料在光催化领域的应用[J]. 应用化学, 2020, 37(6): 611-619. |
WANG Y T, YANG T Y, ZHANG Y H. Application of porphyrin framework materials in the field of photocatalysis[J]. Chinese J Appl Chem, 2020, 37(6): 611-619. | |
5 | LI Z P, FENG X, ZOU Y C, et al. A 2D azine-linked covalent organic framework for gas storage applications[J]. Chem Commun (Cambridge, Eng), 2014, 50(89): 13825-13828. |
6 | PACHFULE P, ACHARJYA A, ROESER J, et al. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation[J]. J Am Chem Soc, 2017, 140(4): 1423-1427. |
7 | CÔTÉ A P, EL-KADERI H M, FURUKAWA H, et al. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks[J]. J Am Chem Soc, 2007, 129(43): 12914-12915. |
8 | 符嫦娥, 陈婉, 戴朝霞, 等. 磁性共价有机框架材料吸附甲基橙和茜素绿两种阴离子有机染料[J]. 应用化学, 2018, 35(5): 594-599. |
FU C E, CHEN W, DAI Z X, et al. Adsorption of two anionic organic dyes, methyl orange and alizarin green on magnetic covalent organic framework materials[J]. Chinese J Appl Chem, 2018, 35(5): 594-599. | |
9 | LI Z, ZHANG Y, HONG X, et al. A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu2+ ions[J]. Chem Commun, 2016, 52(39): 6613-6616. |
10 | LIU X, ZHANG Y, SHEN X, et al. Covalent organic frameworks as pH responsive signaling scaffolds[J]. Chem Commun, 2016, 52(74): 11088. |
11 | SHINDE D B, KANDAMBETH S, PACHFULE P, et al. Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores[J]. Chem Commun, 2014, 51(2): 310-313. |
12 | DING S Y, GAO J, WANG Q, et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J]. J Am Chem Soc, 2011, 133(49): 19816-19822. |
13 | WANG X, HAN X, JIE Z, et al. Homochiral 2D porous covalent organic frameworks for heterogeneous asymmetric catalysis[J]. J Am Chem Soc, 2016, 138(38): 12332-12335. |
14 | VAZQUEZ-MOLINA D A, MOHAMMAD-POUR G S, LEE C, et al. Mechanically shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast Li-ion conductivity[J]. J Am Chem Soc, 2016, 138(31): 9767-9770. |
15 | YOO J T, CHO S J, JUNG G Y, et al. COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries[J]. Nano Lett, 2016, 16(5): 3292-3300. |
16 | LIN G Q, DING H M, YUAN D Q, et al. A pyrene-based, fluorescent three-dimensional covalent organic framework[J]. J Am Chem Soc, 2016, 138(10): 3302-3305. |
17 | CHANDRA S, CHOWDHURY D R, ADDICOAT M, et al. Molecular level control of the capacitance of two-dimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials[J]. Chem Mater, 2017, 29(5): 2074-2080. |
18 | ABDUL K M, VIDYANAND V, SUVENDU K, et al. Convergent covalent organic framework thin sheets as flexible supercapacitor electrodes[J]. ACS Appl Mater Interfaces, 2018, 10(33): 28139-28146. |
19 | QIAN H L, YANG C X, YAN X P. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation[J]. Nat Commun, 2016, 7(10): 12104-12111. |
20 | ZHANG K, CAI S L, YAN Y L, et al. Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography[J]. J Chromatogr A, 2017, 1519(2017): 100-109. |
21 | XING H, HUANG J, CHEN Y, et al. Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation[J]. J Am Chem Soc, 2018, 140(3): 892. |
22 | HUANG J, HAN X, YANG S, et al. Microporous 3D covalent organic frameworks for liquid chromatographic separation of xylene isomers and ethylbenzene[J]. J Am Chem Soc, 2019, 141(22): 8996-9003. |
23 | CHEN J, HUANG Y, WEI X, et al. Covalent organic nanospheres: facile preparation and application in high-resolution gas chromatographic separation[J]. Chem Commun, 2019, 55(73): 10908-10911. |
24 | SEGURA J L, ROYUELA S, RAMOS M. Post-synthetic modification of covalent organic frameworks[J]. Chem Soc Rev, 2019, 48 (14): 3903-3945. |
25 | XU H, GAO J, JIANG D L. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts[J]. Nat Chem, 2015, 7(11): 905-912. |
26 | LOHSE M S, STASSIN T, NAUDIN G, et al. Sequential pore wall modification in a covalent organic framework for application in lactic acid adsorption[J]. Chem Mater, 2016, 28(2): 626-631. |
27 | 何义娟, 李克丽, 李倩, 等. 利用“网包法”制备高效液相色谱大环抗生素类手性固定相[J]. 色谱, 2019, 37(4): 383-391. |
HE Y J, LI K L, LI Q, et al. Preparation of chiral stationary phases of macrocyclic antibiotics for high performance liquid chromatography by “Net-pack method”[J]. Chromatography, 2019, 37(4): 383-391. | |
28 | 冯国政. 液相色谱柱高压匀浆填充装置[J]. 分析仪器, 1987: 36-37. |
FENG G Z. High-pressure homogenate filling device for liquid chromatography column[J]. Anal Instrum, 1987: 36-37. | |
29 | CHANDRA S, KANDAMBETH S, BISWAL B P, et al. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination[J]. J Am Chem Soc, 2013, 135(47): 17853-17861. |
[1] | 冷泽山, 郭洪梅, 蔡函青, 张剑. 高效液相色谱-电雾式检测器法同时检测食品中8种人工甜味剂的应用[J]. 应用化学, 2023, 40(3): 436-440. |
[2] | 李玉凰, 卢泽毅, 袁红梅, 王刚, 张成江. 酰腙键聚合物凝胶的制备及其在硝基呋喃类药物分析中的应用[J]. 应用化学, 2023, 40(1): 100-108. |
[3] | 李淑芳, 郝学飞, 王红旗, 郭晓萌, 冯书惠, 尹海燕, 刘冬梅, 于永杰. 基于超高效液相色谱联用高分辨质谱自动解析方法的金银花不同加工方式分析[J]. 应用化学, 2022, 39(5): 819-827. |
[4] | 孙慧婧, 崔冬妮. 固相萃取-同位素稀释-超高效液相色谱-串联质谱法测定水中涕灭威、涕灭威亚砜和涕灭威砜[J]. 应用化学, 2022, 39(3): 470-479. |
[5] | 陈瑶, 唐英. 柱前衍生化高效液相色谱法测定氯氮平中肼含量[J]. 应用化学, 2022, 39(02): 322-331. |
[6] | 霍颖异, 谢木西丁·买热帕提, 吴敏. 超高效液相色谱-质谱联用法同时快速测定细胞中的4种吡啶核苷酸辅酶[J]. 应用化学, 2022, 39(02): 332-339. |
[7] | 朱富强, 丁卫平, 韩岩君, 田洪根. 脂质去除分散固相萃取-超高效液相色谱-串联质谱法测定动物源性食品中5种α2-受体激动剂[J]. 应用化学, 2021, 38(6): 713-721. |
[8] | 张娜, 李乐乐, 黄鑫, 刘淑莹. 超高效液相色谱-三重四极杆质谱联用结合固相甲基化技术测定不同生长环境人参中寡糖分布[J]. 应用化学, 2021, 38(3): 247-255. |
[9] | 李乐, 谭璐瑩, 王彩霞, 李坤, 李平亚, 刘金平, 刘云鹤. 超高效液相色谱-四极杆飞行时间质谱法鉴定西洋参果梗化学成分[J]. 应用化学, 2021, 38(3): 256-270. |
[10] | 闫伊萌, 岳可心, 刘玉生, 陈革, 田涵雯, 刘忠英, 刘志强, 宋凤瑞, 皮子凤. 基于超高效液相色谱-四极杆-飞行时间串联质谱联用技术的黄英咳喘糖浆化学成分分析[J]. 应用化学, 2021, 38(3): 276-288. |
[11] | 王聪, 赵晓宇, 王海燕, 曹进, 王钢力. 高效液相色谱-三重四极杆质谱法测定动物肌肉中73种兽药残留[J]. 应用化学, 2021, 38(12): 1663-1675. |
[12] | 王为, 吴彦, 楚刘喜, 袁琳, 朱敏惠, 杨瑾, 邓慧华. HIV感染者头发中糖皮质激素和内源性大麻素的高效液相-串联质谱检测[J]. 应用化学, 2021, 38(11): 1521-1530. |
[13] | 汪海涛, 刘海锋, 刘艳, 赵文博, 高润利, 段晶钟, 张远鹏. 多种分析方法测定邻氯代苯亚甲基丙二腈的纯度[J]. 应用化学, 2020, 37(7): 810-815. |
[14] | 胡学一, 胡益涛, 方云, 夏咏梅, 钱飞. 正相高效液相色谱法分析壬基环己醇聚氧乙烯醚中残留壬基环己醇[J]. 应用化学, 2020, 37(7): 816-822. |
[15] | 马浩, 赵雪, 李坤兰, 邵国林, 安庆大, 杨丽玉, 魏立纲. 硅烷基咪唑双三氟甲烷磺酰亚胺离子液体气相色谱固定相的性能评价[J]. 应用化学, 2020, 37(4): 447-454. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||