应用化学 ›› 2022, Vol. 39 ›› Issue (7): 1098-1107.DOI: 10.19894/j.issn.1000-0518.210282
收稿日期:
2021-06-10
接受日期:
2021-10-19
出版日期:
2022-07-01
发布日期:
2022-07-11
通讯作者:
杨绍明
基金资助:
Shan SHAO, Jian ZHANG, Kai-Qiang DENG, Jie YANG, Shao-Ming YANG()
Received:
2021-06-10
Accepted:
2021-10-19
Published:
2022-07-01
Online:
2022-07-11
Contact:
Shao-Ming YANG
About author:
yangsm79@ 163.comSupported by:
摘要:
以Ni、Co为金属节点,5,10,15,20-四(4-羧基苯基)卟啉(TCPP)为金属配体,合成了金属有机框架材料(MOFs)作催化材料,以还原氧化石墨烯(rGO)和乙炔黑(ACET)作信号放大材料,制备出一种灵敏度高、稳定性高、选择性好的无酶电化学传感器,用于检测多巴胺(DA)。通过一步水热法制成rGO-NiCoTCPP,再用滴涂法将其修饰在玻碳电极上,即得GCE/rGO-NiCoTCPP电极,最后将ACET滴涂在此电极上,得到GCE/rGO-NiCoTCPP/ACET电极。利用红外光谱、扫描电子显微镜和电化学阻抗对此电极进行了表征,并将不同修饰电极放在磷酸缓冲液中进行循环伏安表征。GCE/rGO-NiCoTCPP/ACET传感器对DA具有较宽线性范围(0.4 ~160 μmol/L)及较高的电流响应(检出限为0.198 μmol/L),有望应用于实际样品中DA的检测。
中图分类号:
邵姗, 张剑, 邓凯强, 杨杰, 杨绍明. 镍钴双金属-卟啉有机框架复合纳米材料构建的无酶传感器检测多巴胺[J]. 应用化学, 2022, 39(7): 1098-1107.
Shan SHAO, Jian ZHANG, Kai-Qiang DENG, Jie YANG, Shao-Ming YANG. Detection of Dopamine by Enzyme‑Free Sensor Constructed by Nickel‑Cobalt Bimetallic‑porphyrin Organic Framework Composites[J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1098-1107.
图4 GCE/ACET (A)、 GCE/GCE/rGO-NiCoTCPP(B)和GCE/GCE/rGO-NiCoTCPP/ACET(C)电极的SEM图
Fig.4 SEM images of GCE/ACET (A), GCE/GCE/rGO-NiCoTCPP (B) and GCE/GCE/rGO-NiCoTCPP/ACET (C) electrodes
图5 不同修饰电极在PBS(0.2 mol/L PBS, pH=6.5)溶液中的循环伏安曲线a.裸GCE; b.GCE/ NiCoTCPP; c.GCE/rGO-NiCoTCPP; d.GCE/rGO-NiCoTCPP/ACET; e.GCE/ACET
Fig.5 CV responses of different modified electrodes in PBS (0.2 mol/L PBS, pH=6.5)a.bare GCE; b.GCE/ NiCoTCPP; c.GCE/rGO-NiCoTCPP; d.GCE/rGO-NiCoTCPP/ACET;e.GCE/ ACET
图6 在5 mmol/L K3[Fe (CN)6]/K4[Fe (CN)6]溶液(含0.5 mmol/L KCl)中传感器组装过程的EISa.裸GCE; b.GCE/NiCoTCPP; c.GCE/rGO-NiCoTCPP; d.GCE/rGO-NiCoTCPP/ACET
Fig.6 EIS response of sensor assembly process in 5 mmol/L K3[Fe(CN)6]/K4[Fe(CN)6] solution (containing 0.5 mol/L KCl)a. bare GCE; b. GCE /NiCoTCPP; c. GCE/rGO-NiCoTCPP; d. GCE/rGO-NiCoTCPP/ACET
图7 在PBS(0.5 mmol/L DA, pH=6.5)溶液中不同电极的CVa.裸GCE; b.GCE/rGO-NiCoTCPP; c.GCE/rGO-NiCoTCPP/ACET
Fig.7 CV responses of different electrodes in PBS (0.5 mmol/L DA, pH=6.5)a.bare GCE; b.GCE/rGO-NiCoTCPP; c.GCE/rGO-NiCoTCPP/ACET
图10 (A) GCE/rGO-NiTCPP在扫速为30~700 mV/s(30, 50, 100, 200, 300, 400, 500, 600, 700 mV/s)范围内的CV图; (B)峰电流与扫速的线性拟合
Fig.10 (A) CV response of GCE/rGO-NiTCPP at different scan rates ranging from 30 mV/s to 700 mV/s (30, 50,100, 200, 300, 400, 500, 600, 700 mV/s); (B) Linear fit of peak current and sweep speed
图11 (A)传感器对不同浓度DA(0.2,1,2,4,8,10,20,40,80,120,160 μmol/L)的DPV响应; (B) DA的线性拟合曲线
Fig.11 (A) DPV response to DA of different concentrations(0.2,1,2,4,8,10,20,40,80,120,160 μmol/L); (B) Linear fit curve of DA
材料 Material | DA检测限 | DA线性范围 | 参考文献 Ref. |
---|---|---|---|
DA LOD/(μmol·L-1) | DA linear range/(μmol·L-1) | ||
片层石墨柱电极 Sheet graphite column | 0.446 0.005 4.580 | 5~400 | |
玻璃密封金纳米电极 Au/GSNE | 10~2550 | ||
基于P2W16V2和Au/Pd传感复合膜 Au/Pd HNRs | — | [ | |
超薄Co3O4纳米片修饰电极 Ultra?thin Co3O4 nanowires | 0.060×10-3 | 1.0×10-3~1.0×104 | [ |
手性金属有机框架HMOF? Zn@乙炔黑玻碳电极 HMOF?Zn@AB?Nafion?GCE | 0.003 | 0.15~2.5 | [ |
石墨烯?镍钴卟啉有机金属框架/乙炔黑玻碳电极 GCE/rGO?NiCoTCPP/ACET | 0.198 | 0.4~160 | 本工作 This work |
表1 其它传感器对DA的检测
Table 1 DA detection by other sensors
材料 Material | DA检测限 | DA线性范围 | 参考文献 Ref. |
---|---|---|---|
DA LOD/(μmol·L-1) | DA linear range/(μmol·L-1) | ||
片层石墨柱电极 Sheet graphite column | 0.446 0.005 4.580 | 5~400 | |
玻璃密封金纳米电极 Au/GSNE | 10~2550 | ||
基于P2W16V2和Au/Pd传感复合膜 Au/Pd HNRs | — | [ | |
超薄Co3O4纳米片修饰电极 Ultra?thin Co3O4 nanowires | 0.060×10-3 | 1.0×10-3~1.0×104 | [ |
手性金属有机框架HMOF? Zn@乙炔黑玻碳电极 HMOF?Zn@AB?Nafion?GCE | 0.003 | 0.15~2.5 | [ |
石墨烯?镍钴卟啉有机金属框架/乙炔黑玻碳电极 GCE/rGO?NiCoTCPP/ACET | 0.198 | 0.4~160 | 本工作 This work |
样品 Sample | 稀释后DA的含量 The amount of DA after dilution | 加标量 Spiked/(μmol·L-1) | 回收量 Recycle/(μmol·L-1) | 回收率 Recovery/% |
---|---|---|---|---|
1 | 未检出 Not detected | 10 | 9.6 | 96.0 |
2 | 未检出 Not detected | 20 | 20.5 | 102.5 |
3 | 未检出 Not detected | 60 | 61.8 | 103.3 |
表2 DA的回收率
Table 2 Recovery of DA
样品 Sample | 稀释后DA的含量 The amount of DA after dilution | 加标量 Spiked/(μmol·L-1) | 回收量 Recycle/(μmol·L-1) | 回收率 Recovery/% |
---|---|---|---|---|
1 | 未检出 Not detected | 10 | 9.6 | 96.0 |
2 | 未检出 Not detected | 20 | 20.5 | 102.5 |
3 | 未检出 Not detected | 60 | 61.8 | 103.3 |
1 | YANG C, ZHANG C Y, HUANG T, et al. Ultra-long ZnO/carbon nanofiber as free-standing electrochemical sensor for dopamine in the presence of uric acid[J].J Mater Sci, 2019, 54(24): 14897-14904. |
2 | LIU N, XIANG X, FU L, et al. Regenerative field effect transistor biosensor for in vivo monitoring of dopamine in fish brains[J]. Biosens Bioelectron, 2021, 188: 113340. |
3 | ZHANG X L, ZHU Y G, XIE L, et al. A simple, fast and low-cost turn-on fluorescence method for dopamine detection using in situ reaction[J].Anal Chim Acta, 2016, 944(9): 51-56. |
4 | RIBEIRO R P, GASPARETTO J C, RAQUEL D, et al. Simultaneous determination of levodopa, carbidopa, entacapone, tolcapone, 3-O-methyldopa and dopamine in human plasma by an HPLC-MS/MS method [J]. Bioanalysis, 2015, 7(2): 207-220. |
5 | KAYA M, VOLKAN M. New approach for the surface enhanced resonance raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid[J]. Anal Chem, 2012, 84(18): 7729-7735. |
6 | RASHEED P A, LEE J S. Recent advances in optical detection of dopamine using nanomaterials[J]. Microchim Acta, 2017, 184(5): 1-28. |
7 | 覃秀, 袁春玲, 石睿, 等. 基于碘刻蚀金纳米棒的比色法测定多巴胺[J]. 分析化学, 2021, 49(1): 60-67. |
TAN X, YUN C L, SHI R, et al. Colorimetric detection of dopamine based on lodine-mediated etching of gold nanorods[J]. Chinese J Anal Chem, 2021, 49(1): 60-67. | |
8 | 周旋, 崔泽琳, 白雪峰. 构建多巴胺电化学传感器电极材料的研究进展[J]. 化学与粘合, 2021, 43(2): 138-142. |
ZHOU X, CUI Z L, BAI X F. Research progress on construction of electrode materials for dopamine electrochemical sensors[J]. Chem Adhes, 2021, 43(2): 138. | |
9 | 王林玉, 洪莎莎, 黎艳艳, 等. 三维多孔碳/共价有机框架材料自支撑电极用于多巴胺电化学传感分析[J]. 分析化学, 2021, 49(6): 1053-1060. |
WANG L Y, HONG S S, LI Y Y, et al. Dopamine electrochemical sensor based on three-dimensional macroporous carbon/covalent organic framework integrated electrode[J].Chinese J Anal Chem, 2021, 49(6): 1053-1060. | |
10 | 许晓迪, 孟伟, 戴磊. 片层石墨柱电极制备及其对多巴胺的电化学检测[J]. 分析试验室, 2020, 39(6): 621-625. |
XU X D, MENG W, DAI L. Preparation of sheet graphite column electrode and its electrochemical detection of dopamine[J]. Chinese J Anal Lab, 2020, 39(6): 621-625. | |
11 | DING S S, LIU Y Z, MA C R, et al. Development of glass-sealed gold nanoelectrodes for in vivo detection of dopamine in rat brain[J]. Electroanal, 2018, 30(6): 1041-1046. |
12 | CHEN X L, ZHANG G W, HE Y, et al. A sensitive electrochemical sensor based on Au@Pd hybrid nanorods supported on B-doped graphene for simultaneous determination of acetaminophen, dopamine and tyrosine[J]. Int J Electrochem Soc, 2020, 15(6): 5927-5944. |
13 | ELHANG S, IBUPOTO Z H, LIU X J, et al. Sensor dopamine wide range detection sensor based on modified Co3O4 nanowires electrode[J]. Sens Actuators B: chem, 2014, 203(1): 543-549. |
14 | 方智利, 王平, 刘胜东, 等. 基于手性 MOF 与乙炔黑修饰电极对多巴胺和尿酸的同时检测[J]. 无机化学学报, 2020, 36(1): 139-147. |
FANG Z L, WANG P, LIU S D, et al. Simultaneous detection of dopamine and uric acid based on chiral MOF and acetylene black modified electrode[J]. Chinese J Inorg Chem, 2020, 36(1): 139-147. | |
15 | HAN Y Z, WU Y Z, LAI W Z, et al. Electrocatalytic water oxidation by a water-soluble nickel porphyrin complex at neutral pH with low overpotential[J]. Inorg Chem, 2015, 54(11): 5604. |
16 | ZHAO S L, WANG Y, DONG J C,et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nat Energy, 2016, 1(12): 1-10. |
17 | YANG H, YIN D X, GAO L N, et al. 5,10,15,20-Tetrakis(4-carboxylphenyl)porphyrin modified nickel-cobalt layer double hydroxide nanosheets as enhanced photoelectrocatalysts for methanol oxidation under visible-light[J]. J Colloid Interface Sci, 2019, 561: 881-889. |
18 | AHRENHOLT S R, EPLEY C C, MORRIS A J. Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism[J]. J Am Chem Soc, 2014, 136(6): 2464-2472. |
19 | MARTIN P. Heteroatom modified graphenes: electronic and electrochemical applications[J]. J Mater Chem C, 2014, 2(32): 6454-6461. |
20 | WEN Y, MENG W, LI C, et al. An enhanced glucose sensing based on a novel composite of CoII-MOF/Acb modified electrode[J]. Dalton Trans, 2018, 47(11): 3872-3879. |
21 | QIU X N, CAI H, FANG X, et al. The improved thermal oxidative stability of silicone rubber by incorporating reduced graphene oxide: impact factors and action mechanism[J]. Polym Compos, 2018, 39(4): 1105-1115. |
22 | 宋正恩. 系列卟啉化合物的合成与表征[D]. 兰州: 西北师范大学, 2010. |
SONG Z E. Synthesis and characterization of porphyrin compounds[D]. Lanzhou: Northwest Normal University, 2010. | |
23 | YIN D D, LIU J, BO X J, et al. Porphyrinic metal-organic framework/macroporous carbon composites for electrocatalytic applications[J]. Electrochim Acta, 2017, 247(1): 41-49. |
24 | KU S, PALANISAMY S, CHEN S M. Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode[J]. J Colloid Interfaces Sci, 2013, 411: 182-186. |
[1] | 元宁, 马洁, 张晋玲, 张建胜. 蒸气辅助合成PCN-6(M)双金属有机框架材料及其CH4和CO2吸附性能[J]. 应用化学, 2023, 40(6): 896-903. |
[2] | 林楠煜, 高峰, 曲江英, 涂晶晶, 钟伟军, 臧云浩. 超亲水/水下疏油高硅布的制备及其油水分离性能[J]. 应用化学, 2023, 40(3): 449-459. |
[3] | 李东东, 秦丽, 唐录华, 高文惠. 碱性橙Ⅱ印迹传感器的制备及其应用[J]. 应用化学, 2022, 39(7): 1052-1064. |
[4] | 牛青芳, 艾欣, 王奕璇, 贺方玖, 罗彼, 梁文婷, 董川. 三维还原氧化石墨烯/β-环糊精复合物的合成及其电化学检测水中左氧氟沙星[J]. 应用化学, 2022, 39(7): 1129-1137. |
[5] | 徐一鑫, 王爽, 全静, 高婉婷, 宋天群, 杨梅. 二硫化钼量子点/还原氧化石墨烯复合材料的制备及其光催化降解有机染料、四环素和Cr(VI)[J]. 应用化学, 2022, 39(5): 769-778. |
[6] | 张萌, 陈东圳, 任研伟, 宁攀. 纳米岛状银膜@金纳米针尖表面增强拉曼散射传感界面及多巴胺分子的传感分析[J]. 应用化学, 2021, 38(7): 866-873. |
[7] | 章晶晶, 肖鑫, 施冬健, 陈明清. 聚多巴胺在强负电型微球表面的形貌调控[J]. 应用化学, 2020, 37(7): 756-763. |
[8] | 霍朝晖, 杨晓珊, 陈晓丽, 张刚, 尹伟, 曹曼丽, 史蕾, 邱燕璇. 纳米银/二维石墨相氮化碳/还原氧化石墨烯复合材料的制备及其光催化降解抗生素[J]. 应用化学, 2020, 37(4): 471-480. |
[9] | 秦思楠, 唐录华, 高文惠. 三氟氯氰菊酯分子印迹电化学传感器的制备及性能研究与应用[J]. 应用化学, 2019, 36(8): 958-967. |
[10] | 王学亮, 王朝霞, 汪涛, 戴晓辉. 以还原氧化石墨烯和纳米二氧化锆为DNA探针固定平台电化学测定转基因玉米中特定基因序列[J]. 应用化学, 2019, 36(7): 839-846. |
[11] | 邢陈丽, 王晶, 张朝晖, 谢丹丹, 吕飘飘. 氧化石墨烯/富勒烯复合材料增敏多金属离子印迹电化学传感器[J]. 应用化学, 2019, 36(3): 341-348. |
[12] | 王贺, 罗静, 李小杰, 施冬健, 陈明清. 沉淀法高效制备聚多巴胺纳米粒子[J]. 应用化学, 2019, 36(2): 155-160. |
[13] | 章朱迎,陈静,俞佳蕾,赵倩,曹传昊,沈佳丽,施冬健. 多巴胺改性海藻酸多孔支架的制备与性能[J]. 应用化学, 2018, 35(6): 665-673. |
[14] | 冷爽, 王韬, 杨敏, 赵彦芝, 陆伟, 王若明, 孙国英. 基于聚多巴胺的氮掺杂碳材料的制备及其电化学性能[J]. 应用化学, 2018, 35(4): 477-483. |
[15] | 谢丹丹, 闫亮, 尹玉立, 张朝晖, 王晶. 磁性碳纳米管表面多金属离子印迹聚合物制备及应用[J]. 应用化学, 2017, 34(4): 456-463. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||