1 |
KEISER D. The missing benefits of clean water and the role of mismeasured pollution[J]. J Assoc Environ Res, 2019, 6: 669-707.
|
2 |
WANG Y, LI X, HU X L, et al. A novel 3D cobalt(Ⅱ) metal-organic framework to activate peroxymonosulfate for degradation of organic dyes in water[J]. J Solid State Chem, 2020, 289: 121443-121448.
|
3 |
AYADI I, SOUISSI Y, JLASSI I, et al. Chemical synonyms, molecular structure and toxicological risk assessment of synthetic textile dyes: a critical review[J]. J Dev Drugs, 2016, 5: 1000151-1000207.
|
4 |
HASAN Z, CHO D W, ISLAM G J, et al. Catalytic decoloration of commercial azo dyes by copper-carbon composites derived from metal organic frameworks[J]. J Alloy Compd, 2016, 689: 625-631.
|
5 |
AAZAM E S, MOHAMED R M. Environmental remediation of direct blue dye solutions by photocatalytic oxidation with cuprous oxide[J]. J Alloy Compd, 2013, 577: 550-555.
|
6 |
CHO D W, JEON B H, CHON C M, et al. Magnetic chitosan composite for adsorption of cationic and anionic dyes in aqueous solution[J]. J Ind Eng Chem, 2015, 28: 60-66.
|
7 |
董振, 刘亮, 郝艳, 等. 偶氮染料废水处理技术的研究进展[J]. 水处理技术, 2017, 43(4): 6-10.
|
|
DONG Z, LIU L, HAO Y, et al. Research progress of azo dye wastewater treatment technology[J]. Technol Water Treat, 2017, 43(4): 6-10.
|
8 |
SADRI M S, ALAVI M M R, ARAMI M. Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology[J]. J Hazard Mater, 2010, 175 (1): 651-657.
|
9 |
陈平, 魏金枝, 许建超, 等. 电化学氧化与还原联合处理偶氮染料废水的效能[J]. 哈尔滨理工大学学报, 2015, 20(1): 105-109.
|
|
CHEN P, WEI J Z, XU J C, et al. Efficiency of electrochemical oxidation and reduction combined treatment of azo dye wastewater[J]. J Harbin Univ Sci Technol, 2015, 20(1) : 105-109.
|
10 |
焦亮, 孙培德, 王如意, 等. 偶氮染料酸性橙7脱色菌的分离、鉴定及其脱色性能研究[J]. 环境科学学报, 2018, 38(3): 1016-1023.
|
|
JIAO L, SUN P D, WANG R Y, et al. Isolation, identification and decolorization performance of acid orange 7 decolorizing bacteria[J]. Acta Sci Circum, 2018, 38(3): 1016-1023.
|
11 |
CRINI G, LICHTFOUSE E. Advantages and disadvantages of techniques used for wastewater treatment[J]. Environ Chem Lett, 2019, 17(1): 145-155.
|
12 |
LIU Z, VUNJAK N G. Modeling tumor microenvironments using custom-designed biomaterial scaffolds[J]. Curr Opin Chem Eng, 2016, 11: 94-105.
|
13 |
YI F Y, ZHU W, DANG S, et al. Polyoxometalates-based heterometallic organic-inorganic hybrid materials for rapid adsorption and selective separation of methylene blue from aqueous solutions[J]. Chem Commun, 2015, 51(16): 3336-3339.
|
14 |
YUE X Z, YI S S, WANG R W, et al. Novel earth-abundant Cu3P with TiO2 architectured high efficient “P-N” heterojunction nanophotocatalyst for water splitting hydrogen evolution[J]. Nanoscale, 2016, 8: 17516- 17523.
|
15 |
GUO F, HUANG X L, CHEN Z H, et al. Construction of Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics[J]. Sep Purif Technol, 2021, 265: 118477-118487.
|
16 |
IOANNIDI A, PETALA A, FRONTISTIS Z. Copper phosphide promoted BiVO4 photocatalysts for the degradation of sulfamethoxazole in aqueous media[J]. J Environ Chem Eng, 2020, 8(5): 104340-104351.
|
17 |
LI G Y, TU J G, WANG M Y, et al. Cu3P as a novel cathode material for rechargeable aluminum-ion batteries[J]. J Mater Chem A, 2019, 7(14): 8368-8375.
|
18 |
NI S B, ZHENG B, LIU J L, et al. Self-adaptive electrochemical reconstruction boosted exceptional Li+ ion storage in a Cu3P@C anode[J]. J Mater Chem A, 2018, 6(39): 18821-18826.
|
19 |
ZHONG M, QU S Y, ZHAO K, et al. Bimetallic metal-organic framework derived ZnO/Ni0.9Zn0.1O nanocomposites for improved photocatalytic degradation of organic dyes[J]. Chem Select, 2020, 5: 1858-1864.
|
20 |
XU W Q, LIN C C, LIU S J, et al. Effect of pyrolytic temperature over MOFs templated Cu NPs embedded in N-doped carbon matrix on hydrogenation catalytic activities[J]. Inorg Chem Commun, 2020, 115: 107859-107865.
|
21 |
XU W Q, HE S, LIN C C, et al. A copper based metal-organic framework: synthesis, modification and VOCs adsorption[J]. Inorg Chem Commun, 2018, 92: 1-4.
|
22 |
HU L, HUANG Y M, ZHANG F P, et al. CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life[J]. Nanoscale, 2013, 5(10): 4186-4190.
|
23 |
WANG R, DONG X Y, DU J, et al. MOF-derived bifunctional Cu3P nanoparticles coated by a N,P-codoped carbon shell for hydrogen evolution and oxygen reduction[J]. Adv Mater, 2018, 30(6): 1703711-1703720.
|
24 |
周奇, 吴宇恩. 热解法制备MOF衍生多孔碳材料研究进展[J]. 科学通报, 2018, 63(22): 2246-2263.
|
|
ZHOU Q, WU Y E. Research progress on prepartion of MOF-derived porous carbon materials through pyrolysis[J]. Chinese Sci Bull, 2018, 63(22): 2246-2263.
|
25 |
陈德强, 吴振斌, 成水平, 等. UV/H2O2体系光降解邻苯二甲酸二丁酯研究[J]. 环境科学研究, 2005(6): 52-54.
|
|
CHEN D Q, WU Z B, CHEN S P, et al. Study on photodegradation of dibutyl phthalate in UV/H2O2 system[J]. Res Environ Sci, 2005(6): 52-54.
|