1 |
DONG K, LEI Y, ZHAO H, et al. Noble-metal-free electrocatalysts toward H2O2 production[J]. J Mater Chem A, 2020, 8(44): 23123-23141.
|
2 |
CHOI C H, KWON H C, YOOK S, et al. Hydrogen peroxide synthesis via enhanced twoelectron oxygen reduction pathway on carbon-coated Pt surface[J]. J Phys Chem C, 2014, 118(51): 30063-30070.
|
3 |
LU Y, JIANG Y, GAO X, et al. Charge state-dependent catalytic activity of [Au25(SC12H25)18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide[J]. Chem Commun, 2014, 50(62): 8464-8467.
|
4 |
SIAHROSTAMI S, VERDAGUER-CASADEVALL A, KARAMAD M, et al. Enabling direct H2O2 production through rational electrocatalyst design[J]. Nat Mater, 2013, 12(12): 1137-1143.
|
5 |
VERDAGUER-CASADEVALL A, DEIANA D, KARAMAD M, et al. Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering[J]. Nano Lett, 2014, 14(3): 1603-1608.
|
6 |
JIRKOVSKÝ J S, PANAS I, AHLBERG E, et al. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production[J]. J Am Chem Soc, 2011, 133(48): 19432-19441.
|
7 |
SHEN R G, CHEN W X, PENG Q, et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution[J]. Chem, 2019, 5(8): 2099-2110.
|
8 |
SAN ROMAN D, KRISHNAMURTHY D, GARG R, et al. Three-dimensional (3D) out-of-plane graphene edge sites for highly selective two-electron oxygen reduction electrocatalysis[J]. ACS Catal, 2020, 10(3): 1993-2008.
|
9 |
WANG X, JIA Y, MAO X, et al. A directional synthesis for topological defect in carbon[J]. Chem, 2020, 6(8): 2009-2023.
|
10 |
CHEN S, CHEN Z, SIAHROSTAMI S, et al. Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide[J]. ACS Sustainable Chem Eng, 2017, 6(1): 311-317.
|
11 |
WAKI K, WONG R A, OKTAVIANO H S, et al. Non-nitrogen doped and non-metal oxygen reduction electrocatalysts based on carbon nanotubes: mechanism and origin of ORR activity[J]. Energy Environ Sci, 2014, 7(6): 1950-1958.
|
12 |
LU Z Y, CHEN G X, SIAHROSTAMI S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nat Catal, 2018, 1(2): 156-162.
|
13 |
ZHANG Q, TAN X, BEDFORD N M, et al. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production[J]. Nat Commun, 2020, 11(1): 4181.
|
14 |
PANG Y, WANG K, XIE H, et al. Mesoporous carbon hollow spheres as efficient electrocatalysts for oxygen reduction to hydrogen peroxide in neutral electrolytes[J]. ACS Catal, 2020, 10(14): 7434-7442.
|
15 |
HAN G F, LI F, ZOU W, et al. Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2[J]. Nat Commun, 2020, 11(1): 2209.
|
16 |
ZHU J, XIAO X, ZHENG K, et al. KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction[J]. Carbon 2019, 153: 6-11.
|
17 |
SHINDE D B, DEBGUPTA J, KUSHWAHA A, et al. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons[J]. J Am Chem Soc, 2011, 133(12): 4168-4171.
|
18 |
MA T Y, DAI S, JARONIEC M, et al. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts[J]. Angew Chem Int Ed, 2014, 53(28): 7281-7285.
|
19 |
YU A, MA G, REN J, et al. Sustainable carbons and fuels: recent advances of CO2 conversion in molten salts[J]. ChemSusChem, 2020, 13(23): 6229-6245.
|
20 |
REN J, LICHT S. Tracking airborne CO2 mitigation and low cost transformation into valuable carbon nanotubes[J]. Sci Rep, 2016, 6(1): 27760.
|
21 |
LIU Y, QUAN X, FAN X, et al. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon[J]. Angew Chem Int Ed Engl, 2015, 54(23): 6837-6841.
|
22 |
CHEN Z, GU Y, HU L, et al. Synthesis of nanostructured graphite via molten salt reduction of CO2 and SO2 at a relatively low temperature[J]. J Mater Chem A, 2017, 5(39): 20603-20607.
|
23 |
HAN L, SUN Y Y, LI S, et al. In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene[J]. ACS Catal, 2019, 9(2): 1283-1288.
|
24 |
LI Z, GILLON X, DIALLO E, et al. A comparitive study of copolymerization by r.f inductively coupled plasma[J]. J Phys Conf Ser, 2011, 275: 012020.
|
25 |
YU A, MA G, JIANG J, et al. Bio-inspired and eco-friendly synthesis of 3D spongy meso-microporous carbons from CO2 for supercapacitors[J]. Chem Eur J, 2021, 27: 10405-1-412.
|
26 |
KIM H W, ROSS M B, KORNIENKO N, et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J]. Nat Catal, 2018, 1(4): 282-290.
|