[1] |
SUO H Y, SOLAN G A, MA Y P, et al. Developments in compartmentalized bimetallic transition metal ethylene polymerization catalysts[J]. Coordin Chem Rev, 2018, 372:101-106.
|
[2] |
LEE H, JOEY, PARKH. Chromiumcatalystsforethylenetrimerization/tetramerizationfunctionalizedwith ortho-fluorinated arylphosphine ligand[J]. Catal Commun, 2019, 121:15-18.
|
[3] |
张娜, 马莉丽, 陈丽铎, 等. 超支化镍系催化剂构效关系及催化乙烯齐聚机理[J]. 化工进展, 2020, 39(2):539-547.
|
|
ZHANG N, MA L L, CHEN L D, et al. Structure-property relationship and mechanism of catalytic ethylene oligomerization of hyperbrached nickel catalyst[J]. Chem Ind Eng Prog, 2020, 39(2):539-547.
|
[4] |
王俊, 刘锦义, 陈丽铎, 等. 超支化双吡啶亚胺铬催化剂的合成及催化乙烯齐聚性能[J]. 应用化学, 2019, 36(7):773-781.
|
|
WANG J, LIU J Y, CHEN L D, et al. Synthesis and ethylene oligomerization behavior of hyperbranched bispyridineimine chromium catalyst[J]. Chinese J Appl Chem, 2019, 36(7):773-781.
|
[5] |
ALAM F, WANG J D, DONG C H, et al. Chromium (Ⅲ) catalysts based on tridentate silicon-bridged tris (diphenylphosphine) ligands for selective ethylene tri-/tetramerization[J]. J Catal, 2020, 392:278-286.
|
[6] |
ANTONOV A A, SEMIKOLENOVA N V, TALSI E P, et al. Catalytic ethylene oligomerization on cobalt (Ⅱ) bis (imino) pyridine complexes bearing electron-withdrawing groups[J]. J Organomet Chem, 2019, 884(30):55-58.
|
[7] |
FENG C Y, ZHOU S M, WANG D B, et al. Cooperativity in highly active ethylene dimerization by dinuclear nickel complexes bearing a bifunctional PN ligand[J]. Organometallics, 2021, 40(2):184-193.
|
[8] |
WANG M Z, WU W, WANG X, et al. Research progress of iron-based catalysts for selective oligomerization of ethylene[J]. RSC Adv, 2020, 10(71):43640-43652.
|
[9] |
SHIN M, SUH Y W. Ethylene oligomerization over SiO2-Al2O3supported Ni2P catalyst[J]. ChemCatChem, 2020, 12(1):135-140.
|
[10] |
JIN F, YAN Y Z, WU G Y. Ethylene oligomerization over H-and Ni-form aluminosilicate composite with ZSM-5 and MCM-41 structure: effect of acidity strength, nickel site and porosity[J]. Catal Today, 2020, 355:148-161.
|
[11] |
GOETJEN T A, ZHANG X, LIU J, et al. Metal-organic framework supported single site chromium (Ⅲ) catalyst for ethylene oligomerization at low pressure and temperature[J]. ACS Sustainable Chem Eng, 2019, 7(2):2553-2557.
|
[12] |
山东明, 韩阳, 户艳平, 等. MOFs作为催化剂在乙烯选择性齐聚中的应用进展[J]. 石油化工, 2019, 48(2):203-208.
|
|
SHAN D M, HAN Y, LU Y P, et al. Application progress of MOFs as catalysts for selective ethylene oligomerization[J]. Petrochem Technol, 2019, 48(2):203-208.
|
[13] |
ARROZI U S F, BON V, KRAUSE S, et al. In situ imine-based linker formation for the synthesis of zirconium MOFs: a route to CO2capture materials and ethylene oligomerization catalysts[J]. Inorg Chem, 2020, 59(1):350-359.
|
[14] |
LIU B, JIE S Y, BU Z Y, et al. Post synthetic modifification of mixed-linker metal-organic frameworks for ethylene oligomerization[J]. RSC Adv, 2014, 4(107):62343-62346.
|
[15] |
MADRAHIMOV S T, GALLAGHER J R, ZHANG G H, et al. Gas-phase dimerization of ethylene under mild conditions catalyzed by MOF materials containing (bpy) NiⅡcomplexes[J]. ACS Catal, 2015, 5(11):6713-6718.
|
[16] |
PANCHENKO V N, MATROSOVA M M, JEONA J, et al. Catalytic behavior of metal-organic frameworks in the Knoevenagel condensation reaction[J]. J Catal, 2014, 316:251-259.
|
[17] |
ZUBKEVICH S V, TUSKAEV V A, GAGIEVA S C, et al. NNNO-Heteroscorpionate nickel (Ⅱ) and cobalt (Ⅱ) complexes for ethylene oligomerization: the unprecedented formation of odd carbon number olefins[J]. Appl Organomet Chem, 2020, 34(10):5873-5887.
|
[18] |
CHEN L D, MA L L, JIANG Y, et al. Synthesis and characterization of iron, cobalt and nickel complexes bearing para-phenylene-linked pyridine imine ligand and their catalytic properties for ethylene oligomerization[J]. Polym Bull, 2021, 78(1):415-432.
|