[1] AL-HOBAIB A S, AL-SUHYBANI A A. Removal of uranyl ions from aqueous solutions using barium titanate[J]. J Radioanal Nucl Chem, 2014, 299(1): 559-567. [2] LADEIRA A C Q, MORAIS C A. Uranium recovery from industrial effluent by ion exchange-column experiments[J]. Miner Eng, 2005, 18(13): 1337-1340. [3] LUO W, KELLY S D, KEMNER K M, et al. Sequestering uranium and technetium through co-precipitation with aluminum in a contaminated acidic environment[J]. Environ Sci Technol, 2009, 43(19): 7516-7522. [4] BELTRAMI D, CHAGNES A, HADDAD M, et al. Recovery of uranium (VI) from concentrated phosphoric acid by mixtures of newbis(1,3-dialkyloxypropan-2-yl) phosphoric acids and tri-n-octylphosphine oxide[J]. Hydrometallurgy, 2013, 140: 28-33. [5] FAVRE-REGUILLON A, LEBUZIT G, FOOS J, et al. Selective concentration of uranium from seawater by nanofiltration[J]. Ind Engine Chem Res, 2003, 42(23): 5900-5904. [6] HUANG G, PENG W, YANG S, et al. Synthesis of magnetic chitosan/graphene oxide nanocomposites and its application for U(VI) adsorption from aqueous solution[J]. J Radioanal Nucl Chem, 2018, 317(1): 337-344. [7] HE H, ZONG M, DONG F, et al. Simultaneous removal and recovery of uranium from aqueous solution using TiO2 photoelectrochemical reduction method[J]. J Radioanal Nucl Chem, 2017, 313(1): 59-67. [8] SHAO L, WANG X, REN Y, et al. Facile fabrication of magnetic cucurbit[6]uril/graphene oxide composite and application for uranium removal[J]. Chem Eng J, 2016, 286: 311-319. [9] ZHANG Q, ZHAO D, DING Y, et al. Synthesis of Fe-Ni/graphene oxide composite and its highly efficient removal of uranium(VI) from aqueous solution[J]. J Clean Prod, 2019, 230: 1305-1315. [10] GAO Y, LI Y, ZHANG L, et al. Adsorption and removal of tetracycline antibiotics from aqueous solution bygraphene oxide[J]. J Colloid Interface Sci, 2012, 368(1): 540-546. [11] PENG W, LI H, LIU Y, et al. A review on heavy metal ions adsorption from water by graphene oxide and its composites[J]. J Mol Liq, 2017, 230: 496-504. [12] PENG W, HUANG G, YANG S, et al. Performance of biopolymer/graphene oxide gels for the effective adsorption of U(VI) from aqueous solution[J]. J Radioanal Nucl Chem, 2019, 322(2): 861-868. [13] YANG S, HUANG Y, HUANG G, et al. Preparation ofamidoxime-functionalized biopolymer/graphene oxide gels and their application in selective adsorption separation of U(VI) from aqueous solution[J]. J Radioanal Nucl Chem, 2020, 324(2): 847-855. [14] MORSY A M A. Adsorptive removal of uranium ions from liquid waste solutions byphosphorylated chitosan[J]. Environ Technol Inno, 2015, 4: 299-310. [15] PRODROMOU M, PASHALIDIS I. Uranium adsorption by non-treated and chemically modified cactus fibres in aqueous solutions[J]. J Radioanal Nucl Chem, 2013, 298(3): 1587-1595. [16] CAI Y, CHEN L, YANG S, et al. Rational synthesis of novelphosphorylated chitosan-carboxymethyl cellulose composite for highly effective decontamination of U(VI)[J]. ACS Sustain Chem Eng, 2019, 7(5): 5393-5403. [17] LIU L, LI C, BAO C, et al. Preparation and characterization ofchitosan/graphene oxide composites for the adsorption of Au(Ⅲ) and Pd(II)[J]. Talanta, 2012, 93: 350-357. [18] LIU S, YAO F, ODERINDE O, et al. Green synthesis of orientedxanthan gum-graphene oxide hybrid aerogels for water purification[J]. Carbohydr Polym, 2017, 174: 392-399. [19] ZHANG Z, DONG Z, WANG X, et al.Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(Ⅵ): batch and fixed-bed column studies[J]. Chem Eng J, 2019, 370: 1376-1387. [20] LI L, MA R, WEN T, et al.Functionalization of carbon nanomaterials by means of phytic acid for uranium enrichment[J]. Sci Total Environ, 2019, 694: 133697. [21] LI Y, DU Q, LIU T, et al. Comparative study ofmethylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes[J]. Chem Eng Res Des, 2013, 91(2): 361-368. [22] QU R, ZHANG Y, QU W, et al. Mercury adsorption by sulfur- and amidoxime-containing bifunctional silica gel based hybrid materials[J]. Chem Eng J, 2013, 219: 51-61. [23] XIAO J, JING Y, YAO Y, et al. Synthesis ofamidoxime-decorated 3D cubic mesoporous silica via self-assembly co-condensation as a superior uranium(VI) adsorbent[J]. J Mol Liq, 2019, 277: 843-855. [24] ZHAO C, LIU J, YUAN G, et al. A novel activated sludge-graphene oxide composites for the removal of uranium(Ⅵ) from aqueous solutions[J]. J Mol Liq, 2018, 271: 786-794. [25] XIAO J, JING Y, WANG X, et al.Preconcentration of Uranium(VI) from aqueous solution by amidoxime-functionalized microspheres silica material: kinetics, isotherm and mechanism study[J]. Chem Select, 2018, 3(43): 12346-12356. [26] FAROOGHI A, SAYADI M H, REZAEI M R, et al. An efficient removal of lead from aqueous solutions using FeNi3@SiO2 magnetic nanocomposite[J]. Surf Interfaces, 2018, 10: 58-64. [27] WANG S, WANG K, DAI C, et al. Adsorption of Pb2+ on amino-functionalized core-shell magnetic mesoporous SBA-15 silica composite[J]. Chem Eng J, 2015, 262: 897-903. [28] ZHUANG S, CHENG R, KANG M, et al. Kinetic and equilibrium of U(Ⅵ) adsorption onto magnetic amidoxime-functionalized chitosan beads[J]. J Clean Prod, 2018, 188: 655-661. [29] DEBNATH S, MAITY A, PILLAY K. Magneticchitosan-GO nanocomposite: synthesis, characterization and batch adsorber design for Cr(VI) removal[J]. J Environ Chem Eng, 2014, 2(2): 963-973. [30] CHEN H, WANG Y, ZHAO W, et al.Phosphorylation of graphehe oxide to improve adsorption of U(VI) from aquaeous solutions[J]. J Radioanal Nucl Chem, 2017, 313(1): 175-189. [31] CAI Y, WU C, LIU Z, et al. Fabrication of aphosphorylated graphene oxide-chitosan composite for highly effective and selective capture of U(Ⅵ)[J]. Environ Sci: Nano, 2017, 4(9): 1876-1886. [32] WANG F, LI H, LIU Q, et al. Agraphene oxide/amidoxime hydrogel for enhanced uranium capture[J]. Sci Rep, 2016, 6(1): 19367. |