应用化学 ›› 2021, Vol. 38 ›› Issue (4): 343-366.DOI: 10.19894/j.issn.1000-0518.200255
刘玉婷*, 孙嘉希, 尹大伟
发布日期:
2021-06-01
通讯作者:
*E-mail:lyt@sust.edu.cn
基金资助:
LIU Yu-Ting*, SUN Jia-Xi, YIN Da-Wei
Online:
2021-06-01
Supported by:
摘要: 二茂铁基聚合物由于具有独特的结构特点,使其在电化学、催化、材料等方面受到了广泛的关注。二茂铁聚合物的种类较多且合成方法多种多样。本文综述了近年来含二茂铁基聚合物的合成及应用。从缩聚、开环聚合和接枝共聚等方面介绍了近年来二茂铁基聚合物的合成方法,讨论了二茂铁基聚合物在电化学、生物材料及其他方面的应用。最后,对二茂铁基聚合物研究和应用中存在的问题及其前景进行了展望。
中图分类号:
刘玉婷, 孙嘉希, 尹大伟. 含二茂铁基聚合物的合成及应用研究进展[J]. 应用化学, 2021, 38(4): 343-366.
LIU Yu-Ting, SUN Jia-Xi, YIN Da-Wei. Research Progress on the Synthesis and Application of Ferroncene-based Polymers[J]. Chinese Journal of Applied Chemistry, 2021, 38(4): 343-366.
[1] KEALY T J, PAUSON P L. A new type of organo-iron compound[J]. Nature, 1951, 168(4285): 1039-1040. [2] 王非, 徐琰, 冶保献. 两个新的二茂铁基席夫碱衍生物的合成,表征及电化学性质[J]. 天津师范大学学报:自然科学版, 2005, 25(1): 16-19. WANG F, XU Y, YE B X. Synthesis, characterization and electrochemical properties of two novel ferrocenoly Schiff bases derivatives FcL1 and FcL2[J]. J Tianjin Norm Univ (Nat Sci Ed), 2005, 25(1): 16-19. [3] ZHANG D, ZHANG Q, SU J H. A dual-ion-switched molecular brake based on ferrocene[J]. Chem Commun, 2009, 7(13): 1700-1702. [4] AMER W A, Wang L, AMIN A M, et al. Recent progress in the synthesis and application of some ferrocene derivatives and ferrocene-based polymers[J]. J Inorg Organomet Polym Mater, 2010, 20(4): 605-615. [5] JIN H D, WANG L, YU H J, et al. Synthesis and application of main-or side-chain ferrocene-based polymers[J]. Prog Chem (Beijing, China), 2016, 28(1): 51- 57. [6] 刘晓岚, 刘永红, 李珍. 含二茂铁基金属有机光、电、磁功能材料[J], 天水师范学院学报, 2002, 22(2): 18-23. LIU X L, LIU Y H, LI Z. On metal organic photoelectric-magnetic functional materials with ferro-cenyl[J]. J Tianshui Norm Univ, 2002, 22(2): 18-23. [7] RUIZ J, MEDEL M J R, DANIEL M C. Redox-robust pentamethylamidoferrocenyl metallodendrimers that cleanly and selectively recognize the H2PO-4 anion[J]. Chem Commun(Cambridge U K), 2003, 21(4): 464-465. [8] WU J L, WANG L, YU H J. Ferrocene-based redox-responsive polymer gels: synthesis, structures and applications[J]. J Organomet Chem, 2017, 828: 38-51. [9] LI L, SHI J L, YAN J N. Mesoporous SBA-15 material functionalized with ferrocene group and its use as heterogeneous catalyst for benzene hydroxylation[J]. Appl Catal A, 2004, 263(2): 213-217. [10] SHA Y, JIA H, SHEN Z H, et al. Synthetic strategies, properties, and applications of unsaturated main-chain metallopolymers prepared by olefin metathesis polymerization[J]. Polym Rev, 2020: 1-41. [11] WONG W W H, CURIEL D, LAI S W. Ditopic redox-active polyferrocenyl zinc(Ⅱ) dithiocarbamate macrocyclic receptors: synthesis, coordination and electrochemical recognition properties[J]. Dalton Trans, 2005, 21(4): 774-781. [12] APPOH F E, THOMAS D S, KRAATZ H B. Glutamic acid dendrimers attached to a central ferrocene core: synthesis and properties[J]. Macromolecules, 2005, 38(18): 7562-7570. [13] GALLEI M., R TTIGER C. Recent trends in metallopolymer design: redox-controlled surfaces, porous membranes, and switchable optical materials using ferrocene-containing polymers[J]. Chem Eur J, 2018, 24(40): 10006-10021. [14] LABANDE A, RUIZ J, ASTRUC D. Supramolecular gold nanoparticles for the redox recognition of oxoanions: syntheses, titrations, stereoelectronic effects, and selectivity[J]. J Am Chem Soc, 2002, 124(8): 1782-1789. [15] ARANZAES J R, BELIN C, ASTRUC D. Assembly of dendrimers with redox-active [{CpFe(μ3-CO)}4] clusters at the periphery and their application to oxo-anion and adenosine-5'-triphosphate sensing[J]. Angew Chem, 2005, 45(1): 132-136. [16] WANG Y L, ASTRUC D , ABD-El-AZIZ A S . Metallopolymers for advanced sustainable applications[J]. Chem Soc Rev, 2019, 48(2): 558-636. [17] RIQUELME J, CRISTHIAN G, BERGMANN C, et al. Development of multifunctional polymer nanocomposites with carbon-based hybrid nanostructures synthesized from ferrocene[J]. Eur Polym J, 2016, 75: 200-209. [18] 高乌恩, 杨丽敏, 杨树平, 等. 二茂铁亚胺酯的抑菌活性研究I——1-[1-(2-羟基苯基)乙基]-二茂铁及其酯的合成、表征与抑菌活性[J]. 化学试剂, 2002, 24(5): 284-286. GAO W E, YANG L M, YANG S P, et al. Catalytic activity of modified protein anchored palladium in coupling reaction of organotin and acid chloride[J]. Chem Reag, 2002, 24(5): 284-286. [19] JEON H S, JO M H, KIM H J, et al. Anticancer activities of diphenyl difluoroketone, a novel curcumin analog, on KB human oral cancer cells[J]. J Korean Soc Appl Biol Chem, 2012, 55(4): 451-456. [20] LIU X, ZHAO L, LIU F F, et al. Supramolecular redox-responsive ferrocene hydrogels and microgels[J]. Coord Chem Rev, 2020, 419, 213406. [21] SUN Q H, LAM J W Y, XU K T, et al. Nanocluster-containing mesoporous magnetoceramics from hyperbranched organometallic polymer precursors[J]. Chem Mater, 2000, 12(9): 2617-2624. [22] ASTRUC D, BLAIS J C, DANIEL M C, et al. Nano-scale metallodendritic complexes in electron-transfer processes and catalysis[J]. Macromol Symp, 2003, 196: 1-25. [23] TURRIN C O, DONNADIEU B, CAMINADE A M, et al. Organometallic derivatives at the core of phosphorus-containing dendrimers[J]. Z Anorg Allg Chem, 2005, 631(13/14): 2881-2887. [24] MEHDIPOUR-ATAEI S, BABANZADEH S. Synthesis, characterization and properties of novel polyamides containing ferrocene unit and flexible spacers[J]. Appl Organomet Chem. 2007, 21(5): 360-367. [25] CARRAHER C E, MORIE K. Organotin polyesters from 1,1-ferrocenedicarboxylic acid[J]. J Inorg Organomet Polym Mater, 2007, 17(1): 127-133. [26] HE W, DENG F, JIANG Y Y, et al. Novel organometallic aromatic polyester based on ferrocene[J]. Chinese Chem Lett, 2010, 21(6): 748-752. [27] LABANDE AGN S, ASTRUC D. Colloids as redox sensors: recognition of H2PO-4 and HSO-4 by amidoferrocenylalkylthiol-gold nanoparticles[J]. Chem Commun, 2000, 12: 1007-1008. [28] WANG J J, WANG L, WANG X J. Recent progress in highly branched ferrocene-based polymer[J]. Prog Chem Beijing, 2003, 15(5): 409-419. [29] JAYAKUMAR K N, PANDI B, THAYUMANAVAN S. Dendrimers based on a three-dimensionally disposed AB4 monomer[J]. Org Lett, 2004, 6(15): 2547-2550. [30] HUO J, WANG L, CHEN T, et al. Progress in synthesis of branched ferrocene-based polymers and their applications in supramolecular recognition and as precursors of magnetic materials[J]. Des Monomers Polym, 2007, 10(5): 389-404. [31] LI J H, WANG L, YU H J, et al. Progress in the controllable synthesis of novel ferrocene-based polymers and their applications[J]. Des Monomers Polym, 2007, 10(3): 193-205. [32] SENTHIL S, KANNAN P. Ferrocene-based organophosphorus liquid crystalline polymers: synthesis and characterization[J]. J Polym Sci Part A: Polym Chem, 2001, 39(14): 2396-2403. [33] MEHDIPOUR-ATAEI S, BABANZADEH S. New types of heat-resistant, flame-retardant ferrocene-based polyamides with improved solubility[J]. React Funct Polym, 2007, 67(10): 883-892. [34] CHOI T L, LEE K H, JOO W J, et al. Synthesis and nonvolatile memory behavior of redox-active conjugated polymer-containing ferrocene[J]. J Am Chem Soc, 2007, 129(32): 9842-9843. [35] MCADAM C J, NAFADY A, BOND A M, et al. Neo-pentyl-ferrocene based electroactive polyesters[J]. J Inorg Organomet Polym Mater, 2008, 18(4): 485-490. [36] EBADI-DEHAGHANI H, MEHDIPOUR-ATAEI S. Novel ferrocene-based organometallic poly(ether sulfone amide imide)s: preparation, characterization, and properties[J]. J Inorg Organomet Polym Mater, 2012, 22(1): 223-234. [37] AMER W A, WANG L, YU H, et al. Synthesis and properties of a ferrocene-based metallomesogenic polymer containing bis(4-hydroxyoctoxyphenyl)sulfone[J]. J Inorg Organomet Polym Mater, 2012, 22(6): 1229-1239. [38] DENG F, DING W B, PENG Z, et al. The synthesis of ferrocene-based mixed-metal coordination polymer micrsopheres and their application in hydrogen storage[J]. J Alloys Compd, 2015, 647: 1111-1120. [39] QIAN W H, SONG T, YE M, et al. Graphene oxide/ferrocene-containing polymer/gold nanoparticle triple nanocomposite[J]. Nanomaterials, 2019, 9(2): 310. [40] LUO Q, ZHANG R, ZHANG J, et al. Synthesis of conjugated main-chain ferrocene-containing polymers through melt-state polymerization[J]. Organometallics, 2019, 38(15): 2972-2978. [41] 周建华, 王立, 杨强, 等. 二茂铁基聚合物超分子体系构建和性能的研究进展[J]. 高分子通报, 2006, 11: 1-11. ZHOU J H, WANG L, YANG Q, et al. Recent progress in construction and properties of supramolecular systems of ferrocenyl polymer[J]. Chinese Polym Bullet, 2006, 11: 1-11. [42] 石建, 支俊格, 佟斌, 等. 全共轭型二茂铁基聚合物[J]. 化学进展, 2008, 20(4): 558-564. SHI J, ZHI J G, TONG B, et al. Full-conjugated ferrocene-based polymers[J]. Prog Chem, 2008, 20(4): 558-564. [43] HÄUβLER M, SUN Q H, XU K T, et al. Hyperbranched poly(ferrocenylene)s containing groups 14 and 15 elements: syntheses, optical and thermal properties, and pyrolytic transformations into nanostructured magnetoceramics[J]. J Inorg Organomet Polym Mater, 2005, 15(1): 67-81. [44] DVORIKOVA R A, NIKITIN L N, KORSHAK Y V, et al. Ferrocenecontaining polyphenylenes as precursors of magnetic nanomaterials[J]. Nanotechnol Russ, 2010, 5(9-10): 647-655. [45] LI H L, ZHAO F M, YUE L, et al. Nonenzymatic electrochemical biosensor based on novel hydrophilic ferrocene-terminated hyperbranched polymer and its application in glucose detection[J]. Electroanalysis, 2016, 28(5): 1003-1011. [46] CAMPBELL A S, MURATA H, CARMALI S, et al. Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell[J]. Biosens Bioelectron, 2016, 86: 446-453. [47] LI H K, CHI W W, LIU Y J, et al. Ferrocene-based hyperbranched polytriazoles: synthesis by click polymerization and application as precursors to nanostructured magnetoceramics[J]. Macromol Rapid Commun, 2017, 38(17): 1700075. [48] MANNERS I. Poly(ferrocenylsilanes): novel organometallic plastics[J]. Chem Commun, 1999, 10: 857-865. [49] 王立, 潘杰, 计兵, 等. 热开环聚合制备高相对分子质量二茂铁基聚二甲基硅烷及其与四氰基乙烯生成电荷转移络合物的研究[J]. 高分子学报, 2000(6): 788-790. WANG L, PAN J, JI B, et al. Study on the preparation of high molecular weight poly(ferrocenyl dimethylsilanei) through thermal ring opening polymerization and poly(ferrocenyldimethysilane)/TCNE charge transfer complex[J]. Acta Polym Sin, 2000(6): 788-790. [50] CYR P W, RIDER D A, KULBABA K. Photopatternable metallopolymers: photo-cross-linking and photolithography of polyferrocenylsilane methacrylates[J]. Macromolecules, 2004, 37(11): 3959-3961. [51] HEO R W, PARK J S, LEE T R. Synthesis and ring-opening metathesis polymerization of aryl-substituted 1,1'-(1,3-butadienylene)ferrocenes[J]. Macromolecules, 2005, 38(7): 2564-2573. [52] WANG J J, WANG L, CHEN T, et al. Study on synthesis and properties of poly(ferrocenylnbutylmethylsilane) with unsymmetrical silicon substitution groups[J]. Eur Polym J, 2006, 42(4): 843-848. [53] ZHAO D L, REN B Y, LIU S S, et al. A novel photoreversible poly(ferrocenylsilane) with coumarin side group: synthesis, characterization, and electrochemical activities[J]. Chem Commun, 2006(7): 779-781. [54] MASSON G, LOUGH A J, MANNERS I. Soluble poly(ferrocenylenevinylene) witht-butyl substituents on the cyclopentadienyl ligands via ring-opening metathesis polymerization[J]. Macromolecules, 2008, 41(3): 539-547. [55] LI W Z, CHU J, HENG L L. A novel thermal-resistant copolymer from polysiloxane-based polybenzoxazine precursor and ferrocene-based benzoxazine monomer[J]. Polymer, 2013, 54(18): 4909-4922. [56] TONHAUSER C, ALKAN A, SCHMER M, et al. Ferrocenyl glycidyl ether: a versatile ferrocene monomer for copolymerization with ethylene oxide to water-soluble, thermoresponsive copolymers[J]. Macromolecules, 2013, 46(3): 647-655. [57] SHA Y, ZHANG Y D, ZHU T Y, et al. Ring-closing metathesis and ring-opening metathesis polymerization toward main-chain ferrocene-containing polymers[J]. Macromolecules, 2018, 51(22): 9131-9140. [58] TEIMURI-MOFRAD R, ABBASI H, HADI R. Graphene oxide-grafted ferrocene moiety via ring opening polymerization (ROP) as a supercapacitor electrode material[J]. Polymer, 2019, 167(1): 138-145. [59] MU S D, LIU W T, ZHAO L, et al. Antimicrobial AgNPs composites of gelatin hydrogels crosslinked by ferrocene-containing tetrablock terpolymer[J]. Polymer, 2019, 169: 80-94. [60] LIU X, LIU F F, WANG Y L. Ferrocene-containing amphiphilic dendronized random copolymer as efficient stabilizer for reusable gold nanoparticles in catalysis[J]. React Funct Polym, 2019, 143: 104325. [61] WU S Z, CHEN Y N, ZENG F, et al. Electron transfer in ferrocene-containing functionalized chitosan and its electrocatalytic decomposition of perxide[J]. Macromolecules, 2006, 39(20): 6796-6799. [62] SHI M, LI A L, LIANG H, et al. Reversible addition fragmentation transfer polymerization of a novel monomer containing both aldehyde and ferrocene functional groups[J]. Macromolecules, 2007, 40(6): 1891-1896. [63] BUNTE C, J RGEN R. Photochemical generation of ferrocene-based redox-polymer networksa[J]. Macromol Rapid Commun, 2010, 30(21): 1817-1822. [64] XU J J, TIAN Y, PENG R, et al. Ferrocene clicked poly(3,4-ethylenedioxythiophene) conducting polymer: characterization, electrochemical and electrochromic properties[J]. Electrochem Commun, 2009, 11(10): 1972-1975. [65] KURBANOV M A, SULEYMANOV G Z, SAFAROV N A. Conductivity photoquenching effect in polymer-ferrocene composites[J]. Semiconductors, 2011, 45(4): 503-509. [66] LI H K, LI L Z, WU H Q, et al. Ferrocene-based poly(aroxycarbonyltriazole)s: synthesis by metal-free click polymerization and use as precursors to magnetic ceramics[J]. Polym Chem, 2013, 4(22): 5537-5541. [67] GAGONO-THIBAULT E, COSSEMENT D, GUILLET-NICOLAS R. Nanoporous ferrocene-based cross-linked polymers and their hydrogen sorption properties[J]. Micropor Mesopor Mater, 2014, 188: 182-189. [68] LIU Q Q, TANG Z, WU M, et al. Novel ferrocene-based nanoporous organic polymers for clean energy application[J]. RSC Adv, 2015, 5(12): 8933-8937. [69] GUO W P, LEI Z L. Redox-responsive supramolecular polymer based on b-cyclodextrin and ferrocene-decorated main chain of PAA[J]. J Mater Res, 2015, 30(21): 3201-3210. [70] ZHANG H, LIU F, CAO J, et al. Ferrocene-containing polymers synthesized by acyclic diene metathesis (ADMET) polymerization[J]. Chinese J Polym, 2016, 34(2):242-252. [71] LI W X, MA Z F. Conductive catalytic redox hydrogel composed of aniline and vinyl-ferrocene for ultrasensitive detection of prostate specific antigen[J]. Sens Actuators B Chem, 2017, 248: 545-550. [72] 朱晓洁, 赵伟, 许升, 等. 二茂铁基聚合物/碳纳米管用于亚硝酸盐检测[J]. 功能高分子学报, 2018, 31(5): 468-477. ZHU X J, ZHAO W, XU S, et al. Carbon nanotubes modified with ferrocenyl copolymers for nitrite determination[J]. J Funct Polym, 2018, 31(5): 468-477. [73] XIA X, YU H J, WANG L, et al. Preparation of redox- and photo-responsive ferrocene- and azobenzene-based polymer films and their properties[J]. Eur Polym J, 2018, 100: 103-110. [74] YANG X R, LIU H Z. Diphenylphosphine-substituted ferrocene/silsesquioxane-based hybrid porous polymers as highly efficient adsorbents for water treatment[J]. ACS Appl Mater Interfaces, 2019, 11(29): 26474-26482. [75] LIU Y T, YANG L S, YIN D W, et al. Solvent-free synthesis, characterization, biological activity of schiff bases and their metal (II) complexes derived from ferrocenyl chalcone[J]. J Organomet Chem, 2019, 899: 120903. [76] GAO X, DENG L, HU J F, et al. Ferrocene-containing conjugated oligomers synthesized by acyclic diene metathesis polymerization[J]. Polymer, 2019, 11(8): 1334. [77] NA Y, L J S, WOO J. Reactive oxygen species (ROS)-responsive ferrratocene-polymerbased nanoparticles for controlled release of drugs[J]. J Mater Chem B, 2020, 8(9): 1906-1915. [78] GAO X , ZHANG Q R, HU J F, et al. Ferrocene-containing cross-conjugated polymers synthesized by palladium-catalyzed cross-coupling polymerization[J]. Polymer, 2020, 207: 122827. [79] 刘玉婷, 吴倩倩, 尹大伟, 等. Mannich反应的最新研究进展及其应用[J]. 有机化学, 2016, 36(5): 927-938. LIU Y T, WU Q Q, YIN D W, et al. Latest progress and application of mannich reaction[J]. Chinese J Org Chem, 2016, 36(5): 927-938. [80] LIU Y T, XIN H, YIN J Y, et al. Synthesis of novel ferrocenyl Mannich bases and their antibacterial activities[J]. J Mol Struct, 2017, 12: 89-97. [81] YOON H C, HONG M Y, KIM H S. Functionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode[J]. Anal Chem, 2000, 72(18): 4420-4427. [82] YANG W W, ZHOU H, SUN C Q. Synthesis of ferrocene-branched chitosan derivatives: redox polysaccharides and their application to reagentless enzyme-based biosensors[J]. Macromol Rapid Commun, 2007, 28(3): 265-270. [83] PAUL S, CHAVAN N N, RADHAKRISHNAN S. Polypyrrole functionalized with ferrocenyl derivative as a rapid carbon monoxide sensor[J]. Synth Met, 2009, 159(5/6): 415-418. [84] MATSUI J, ABE K, MITSUISHI M, et al. Quasi-solid-state optical logic devices based on redox polymer nanosheet assembly[J]. Langmuir, 2009, 25(18): 11061-11066. [85] ZHANG Q X, JIAO L S, SHAN C S. Synthesis and properties of ferrocene-functionalised polythiophene derivatives[J]. Synth Met, 2009, 159(14): 1422-1426. [86] SCHMIDT-STEIN F, GNICHWITZ J F, SALONEN J, et al. Electrochemical wettability control on conductive TiO2 nanotube surfaces modified with a ferrocene redox system[J]. Electrochem Commun, 2009, 11(10): 2000-2003. [87] LI F, PANDEY B, ITO T. Linker-based control of electron propagation through ferrocene moieties covalently anchored onto insulator-based nanopores derived from a polystyrene-poly(methylmethacrylate) diblock copolymer[J]. Langmuir, 2012, 28(48): 16496-16500. [88] BIZID S, MLIKA R, SAID A H, et al. Investigations of poly(p-phenylene) modified with ferrocene and their application in electrochemical DNA sensing[J]. Sens Actuators, 2016, 226: 370-380. [89] ZHANG Q M, BERG D, DUAN J Q, et al. Optical devices constructed from ferrocene-modified microgels for H2O2 sensing[J]. ACS Appl Mater Interfaces, 2016, 8(40): 27264-27269. [90] PATIL Y, SHARMA G D, MISRA R, et al. Ferrocene-diketopyrrolopyrrole based non-fullerene acceptors for bulk heterojunction polymer solar cells[J]. J Mater Chem A, 2017, 5(26): 1039. [91] LI B, PU W Y, XU H X, et al. Magneto-controlled flow-injection device for electrochemical immunoassay of alphafetoprotein on magnetic beads using redox-active ferrocene derivative polymer nanospheres[J]. Analyst, 2019, 144(4): 1433-1441. [92] LIU Y T, LIAN G D, YIN D W, et al. Synthesis, characterization and biological activity of ferrocene-based Schiff base ligands and their metal (II) complexes[J]. Spectrochim Acta Part A, 2013, 100: 131-137. [93] LIU Y T, XIN H, YIN D W, et al. Synthesis of dual-core mannich bases bearing ferrocenyl and phenothiazinyl groups[J]. J Organomet Chem, 2017, 848: 222-225. [94] LI C X, ZENG Y L, TANG C R. Glucose biosensor based on carbon/PVC-COOH/ferrocene composite with covalently immobilized enzyme[J]. Chinese Chem Lett, 2005, 16(10): 1357-1360. [95] DUIVENVOORDEN W C M, LIU Y N, SCHATTE G, et al. Synthesis of redox-active ferrocene pyrazole conjugates and their cytotoxicity in human mammary adenocarcinoma MCF-7 cells[J]. Inorg Chim Acta, 2005, 358(1): 3183-3189. [96] TRIPATHI V S, KANDIMALLA V B, JU H X. Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite[J]. Biosens Bioelectron, 2006, 21(8): 1529-1535. [97] YANG X Y, LU Y H, MA Y F, et al. DNA electrochemical sensor based on an adduct of single-walled carbon nanotubes and ferrocene[J]. Biotechnol Lett, 2007, 29(11): 1775-1779. [98] NAGARALE R K, LEE J M, SHIN W. Electrochemical properties of ferrocene modified polysiloxane/chitosan nanocomposite and its application to glucose sensor[J]. Electrochim Acta, 2009, 54(26): 6508-6514. [99] ZHENG H T, ZHOU J L, ZHANG J M, et al. Electrical communication between electrode and dehydrogenase by a ferrocene-labeled high molecular-weight cofactor derivative: application to a reagentless biosensor[J]. Microchim Acta, 2009, 165(1/2): 109-115. [100] RAHMAN M A, SON J I, WON M S, et al. Gold nanoparticles doped conducting polymer nanorod electrodes: ferrocene catalyzed aptamer-based thrombin immunosensor[J]. Anal Chem, 2009, 81(16): 6604-6611. [101] TRAN T O, LAMMERT E G, CHEN J, et al. Incorporation of single-walled carbon nanotubes into ferrocene-modified linear polyethylenimine redox polymer films[J]. Langmuir, 2011, 27(10): 6201-6210. [102] LIU M L, WANG L P, DENG J H. Highly sensitive and selective dopamine biosensor based on a phenylethynyl ferrocene/graphene nanocomposite modified electrode[J]. Analyst, 2012, 137(19): 4577-4583. [103] GUL A, AKHTER Z, SIDDIQ M, et al. Ferrocene-based aliphatic and aromatic poly(azomethine)esters: synthesis, physicochemical studies, and biological evaluation[J]. Macromolecules, 2013, 46(7): 2800-2807. [104] BUNTE C, HUSSEIN L, URBAN G A. Performance of non-compartmentalized enzymatic biofuel cell based on buckypaper cathode and ferrocene-containing redox polymer anode[J]. J Power Sources, 2014, 247: 579-586. [105] ADERIBIGBE B A, RAY S S. Preparation, characterization and in vitro release kinetics of polyaspartamide-based conjugates containing antimalarial and anticancer agents for combination therapy[J]. J Drug Delivery Sci Technol, 2016, 36: 34-45. [106] LIU Y T, SHENG J, YIN D W, et al. Ferrocenyl chalcone-based Schiff bases and their metal complexes: highly efficient, solvent-free synthesis, characterization, biological research[J]. J Organomet Chem, 2018, 865: 27-33. [107] ALIZADEH T, AKHOUNDIAN M, GANJALI M R. Ferrocene/imprinted polymer nanomaterial-modified carbon paste electrode as a new generation of the gate effect-based voltammetric sensor[J]. New J Chem, 2018, 42(6): 1039. [108] DVORIKOVA R A, NIKITIN L N, KORSHAK Y V, et al. New magnetic nanomaterials based on hyperbranched ferrocene-containing polyphenylenes synthesized in sub- and supercritical carbon dioxide[J]. Dokl Chem, 2008, 422(1): 231-235. [109] DENG Z, YU H J, WANG L, et al. A novel ferrocene-containing polymer based dispersant for noncovalent dispersion of multi-walled carbon nanotubes in chloroform[J]. J Organomet Chem, 2015, 791: 274-278. [110] LI G, LIU Q Q, LIAO B, et al. Synthesis of novel ferrocene-based conjugated microporous polymers with intrinsic magnetism[J]. Eur Polym J, 2017, 93: 556-560. [111] JONES B H, WHEELER D R, BLACK H T. Stress relaxation in epoxy thermosets via a ferrocene-based amine curing agent[J]. Macromolecules, 2017, 50(13): 5014-5024. [112] REDDY P G, MOINUDDIN M G, JOSEPH A M, et al. Ferrocene bearing non-ionic poly-aryl tosylates: synthesis, characterization and electron beam lithography applications[J]. J Photopolym Sci Technol, 2018, 31(6): 669-678. [113] CHENG T, ZOU Z J, FU Y F, et al. Highly dispersed DPPF locked in knitting hyper-crosslinked polymers as efficient and recyclable catalyst[J]. Chem Sel, 2018, 3(21): 5987-5992. [114] 文溢, 廖对军, 程洲, 等. 一种二茂铁基含磷阻燃剂在膨胀型聚丙烯中的应用[J]. 西南科技大学学报, 2018, 33(4): 25-30, 45. WEN Y, LIAO D J, CHENG Z, et al. Application of a ferrocene and phosphorus containing flame retardant in intumescent polypropylene[J]. J Southwest Univ Sci Technol, 2018, 33(4): 25-30, 45. [115] DONG Q C, MENG Z G, HO C L, et al. A molecular approach to magnetic metallic nanostructures from metallopolymer precursors[J]. Chem Soc Rev, 2018, 47(13): 4934-4953. |
[1] | 李佳铮, 何述钟. 天然产物Polygalolides的全合成研究进展[J]. 应用化学, 2023, 40(5): 615-624. |
[2] | 刘振邦, 张硕, 包宇, 马英明, 梁蔚淇, 王伟, 何颖, 牛利. 深度学习在化学信息学中的应用研究进展[J]. 应用化学, 2023, 40(3): 360-373. |
[3] | 刘洋, 张海宝, 陈强. 纳秒脉冲介质阻挡放电等离子体合成氨工艺条件优化[J]. 应用化学, 2023, 40(2): 268-276. |
[4] | 曹蓉, 夏杰桢, 廖漫华, 赵路超, 赵晨, 吴琪. 单原子催化剂在电化学合成氨中的理论研究进展[J]. 应用化学, 2023, 40(1): 9-23. |
[5] | 田秦秦, 张佳, 陈峙, 何炜, 张生勇. 泊沙康唑的合成、检测及其临床应用研究进展[J]. 应用化学, 2022, 39(8): 1177-1189. |
[6] | 孟丹, 郑开元, 陈珊珊, 卓钊龙, 王丽丽. 硅、氮共掺杂碳点荧光粉的制备及发光性能[J]. 应用化学, 2022, 39(11): 1766-1773. |
[7] | 吴之强, 韩新宁, 刘阳, 王刚, 詹海鹃, 刘万毅. 水相或无溶剂绿色催化合成双吲哚基甲烷研究进展[J]. 应用化学, 2021, 38(8): 881-896. |
[8] | 薄纯辉, 姜维佳, 王玉高, 石利红, 董川. 煤基碳量子点合成研究进展[J]. 应用化学, 2021, 38(7): 767-788. |
[9] | 刘洋, 张海宝, 陈强. 低温等离子体合成氨研究进展[J]. 应用化学, 2021, 38(6): 622-636. |
[10] | 谢志琦, 张婷, 李英崴, 王周君, 代飞, 张瑞锐, 刘瑞霞. 钒磷氧合成条件对丁烷选择性氧化催化性能的影响[J]. 应用化学, 2021, 38(4): 414-421. |
[11] | 徐峰, 张坤, 阴凤琴, 徐斐, 庞雨萱, 陈诗婷. 阴离子印迹聚合物的制备及其应用研究进展[J]. 应用化学, 2021, 38(2): 123-135. |
[12] | 纪宇帆, 蔡锋, 于海峰. 液晶聚合物的表面形貌光调控研究进展[J]. 应用化学, 2021, 38(10): 1226-1237. |
[13] | 罗龙飞, 李玉洁, 沈志豪, 郑世军, 范星河. 偶氮苯液晶嵌段共聚物薄膜自组装和光响应性研究进展[J]. 应用化学, 2021, 38(10): 1238-1254. |
[14] | 毕一飘, 宫雪, 杨发, 阮明波, 宋平, 徐维林. 多价MnOx/C电催化剂用于高效氮还原反应[J]. 应用化学, 2020, 37(9): 1048-1055. |
[15] | 张宝华, 史兰香. 一锅法合成芳(杂环)胺亚甲基双膦酸四乙酯[J]. 应用化学, 2020, 37(8): 877-882. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||