应用化学 ›› 2020, Vol. 37 ›› Issue (7): 733-745.DOI: 10.11944/j.issn.1000-0518.2020.07.200058
蒙阳, 杨婵, 彭娟*
收稿日期:
2020-03-03
出版日期:
2020-07-01
发布日期:
2020-07-07
通讯作者:
彭娟,副教授; Tel:0951-2062004; E-mail:pengjuan@nxu.edu.cn; 研究方向:电催化
基金资助:
MENG Yang, YANG Chan, PENG Juan*
Received:
2020-03-03
Published:
2020-07-01
Online:
2020-07-07
Contact:
PENG Juan, associate professor; Tel:0951-2062004; E-mail:pengjuan@nxu.edu.cn; Research interests:electrocatalysis
Supported by:
摘要: 过渡金属磷化物(TMPs)因其导电性好、稳定性高而被广泛认为是电解水析氢反应(HER)的优异电催化材料。 本文主要围绕基于过渡金属Ni、Co、Fe磷化物纳米材料的合成、表征、以及在碱性介质中的电催化HER性能等方面展开。 从中得出结论,在一定范围内,TMPs体系中富磷相越多,其在碱性电解液中的HER活性越高。 为以后的研究提供了方向。
蒙阳, 杨婵, 彭娟. 基于铁、钴、镍金属磷化物纳米催化剂的碱性条件下电解水制氢的研究进展[J]. 应用化学, 2020, 37(7): 733-745.
MENG Yang, YANG Chan, PENG Juan. Progress in Iron, Cobalt and Nickel-Based Metal Phosphide Nano-catalysts for Hydrogen Production under Alkaline Conditions[J]. Chinese Journal of Applied Chemistry, 2020, 37(7): 733-745.
[1] Dai D,Wei B,Li Y,et al. Self-supported Hierarchical Fe(PO3)2@Cu3P Nanotube Arrays for Efficient Hydrogen Evolution in Alkaline Media[J]. J Alloys Comp,2020,820(2):258-266. [2] Esmailzadeh S,Shahrabi T,Darband G B,et al. Pulse Electrodeposition of Nickel Selenide Nanostructure as a Binder-Free and High-Efficient Catalyst for both Electrocatalytic Hydrogen and Oxygen Evolution Reactions in Alkaline Solution[J]. Electrochim Acta,2020,334(5):131-140. [3] Liu H,Qian X,Niu Y,et al. Hierarchical Ni-MoSex@CoSe2 Core-Shell Nanosphere as Highly Active Bifunctional Catalyst for Efficient Dye-Sensitized Solar Cell and Alkaline Hydrogen Evolution[J]. Chem Eng J,2020,383(27):427-436. [4] Cheng H E,Li W L,Yang Z P. Enhancement of Hydrogen Evolution Reaction by Pt Nanopillar-Array Electrode in Alkaline Media and the Effect of Nanopillar Length on the Electrode Efficiency[J]. Int J Hydrogen Energy,2019,44(57):30141-30150. [5] Kim J,Kim H,Lee W J,et al. Theoretical and Experimental Understanding of Hydrogen Evolution Reaction Kinetics in Alkaline Electrolytes with Pt-Based Core-Shell Nanocrystals[J]. J Am Chem Soc,2019,141(45):18256-18263. [6] Wang X,Liu R,Zhang Y,et al. Hierarchical Ni3S2-NiOOH Hetero-Nanocomposite Grown on Nickel Foam as a Noble-Metal-Free Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Electrolyte[J]. Appl Surf Sci,2018,456(5):164-173. [7] Zhang L,Cong M,Wang Y,et al. V4P6.98/VO(PO3)2 as an Efficient Non-noble Metal Catalyst for Electrochemical Hydrogen Evolution in Alkaline Electrolyte[J]. ChemElectroChem,2019,6(5):1329-1332. [8] Zhang Y,Wang Y,Han C,et al. Tungsten-Coated Nano-Boron Carbide as a Non-noble Metal Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions in Alkaline Media[J]. Nanoscale,2017,9(48):19176-19182. [9] Cai J,Song Y,Zang Y,et al. N-Induced Lattice Contraction Generally Boosts the Hydrogen Evolution Catalysis of P-Rich Metal Phosphides[J]. Sci Adv,2020,6(1):28252-28261. [10] PAN Zhiyu. Research Progress of Transition Metal-Based Electrocatalytic Hydrogen Evolution Materials[J]. Mod Chem Res,2019,2(1841):143-144(in Chinese). 潘致宇. 过渡金属基电催化析氢材料的研究进展[J]. 当代化工研究,2019,2(1841):143-144. [11] Yu H,Li J,Gao G,et al. Metal-Organic Frameworks Derived Carbon-Incorporated Cobalt/Dicobalt Phosphide Microspheres as Mott-Schottky Electrocatalyst for Efficient and Stable Hydrogen Evolution Reaction in Wide-pH Environment[J]. J Colloid Interface Sci,2020,565(23):513-522. [12] Du H,Kong R M,Guo X,et al. Recent Progress in Transition Metal Phosphides with Enhanced Electrocatalysis for Hydrogen Evolution[J]. Nanoscale,2018,10(46):21617-21624. [13] Lv Y,Wang X. Nonprecious Metal Phosphides as Catalysts for Hydrogen Evolution, Oxygen Reduction and Evolution Reactions[J]. Catal Sci Technol,2017,7(17):3676-3691. [14] Callejas J F,Read C G,Roske C W,et al. Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction[J]. Chem Mater,2016,28(17):6017-6044. [15] Jiang P,Liu Q,Sun X. NiP2 Nanosheet Arrays Supported on Carbon Cloth:An Efficient 3D Hydrogen Evolution Cathode in both Acidic and Alkaline Solutions[J]. Nanoscale,2014,6(22):13440-13445. [16] Zhang Y,Wang Y,Wang T,et al. Heterostructure of 2D CoP Nanosheets/1D Carbon Nanotubes to Significantly Boost the Alkaline Hydrogen Evolution[J]. Adv Mater Interfaces,2020,7(2):2571-2579. [17] CHEN Yaqiong,ZHANG Jinfeng,WAN Lei,et al. Effect of Nickel Phosphide Nanoparticles Crystallization on Hydrogen Evolution Reaction Catalytic Performance[J]. Trans Nonferrous Met Soc China,2017,27(2):369-376(in Chinese). 陈亚琼,张金凤,万磊,等. 镍磷纳米颗粒的晶化对其催化析氢性能的影响[J]. 中国有色金属学报,2017,27(2):369-376. [18] Zhang S,Xiong T,Tang X,et al. Engineering Inner-Porous Cobalt Phosphide Nanowire Based on Controllable Phosphating for Efficient Hydrogen Evolution in Both Acidic and Alkaline Conditions[J]. Appl Surf Sci,2019,481(15):1524-1531. [19] McEnaney J M,Crompton J C,Callejas J F,et al. Amorphous Molybdenum Phosphide Nanoparticles for Electrocatalytic Hydrogen Evolution[J]. Chem Mater,2014,26(16):4826-4831. [20] Popczun E J,McKone J R,Read C G,et al. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction[J]. J Am Chem Soc,2013,135(25):9267-9270. [21] Xing Z,Liu Q,Asiri A M,et al. Closely Interconnected Network of Molybdenum Phosphide Nanoparticles:A Highly Efficient Electrocatalyst for Generating Hydrogen from Water[J]. Adv Mater,2014,26(32):5702-5710. [22] Feng Y,Yu X Y,Paik U. Nickel Cobalt Phosphides Quasi-Hollow Nanocubes as an Efficient Electrocatalyst for Hydrogen Evolution in Alkaline Solution[J]. Chem Commun,2016,52(8):1633-1636. [23] Li X,Liu W,Zhang M,et al. Strong Metal-Phosphide Interactions in Core-Shell Geometry for Enhanced Electrocatalysis[J]. Nano Lett,2017,17(3):2057-2063. [24] Liu Q,Tian J,Cui W,et al. Carbon Nanotubes Decorated with CoP Nanocrystals:A Highly Active Non-Noble-Metal Nanohybrid Electrocatalyst for Hydrogen Evolution[J]. Angew Chem Int Edit,2014,53(26):6710-6714. [25] Wang X D,Cao Y,Teng Y,et al. Large-Area Synthesis of a Ni2P Honeycomb Electrode for Highly Efficient Water Splitting[J]. ACS Appl Mater Interfaces,2017,9(38):32812-32819. [26] Jiang N,You B,Sheng M,et al. Electrodeposited Cobalt-Phosphorous-Derived Films as Competent Bifunctional Catalysts for Overall Water Splitting[J]. Angew Chem Int Edit,2015,54(21):6251-6254. [27] Liu Q,Gu S,Li C M. Electrodeposition of Nickel-Phosphorus Nanoparticles Film as a Janus Electrocatalyst for Electro-Splitting of Water[J]. J Power Sources,2015,299(3):342-353. [28] Han S, Feng Y,Zhang F,et al. Metal-Phosphide-Containing Porous Carbons Derived from an Ionic-Polymer Framework and Applied as Highly Efficient Electrochemical Catalysts for Water Splitting[J]. Adv Funct Mater,2015,25(25):3899-3906. [29] Jiang D,Xu Y,Yang R,et al. CoP3/CoMoP Heterogeneous Nanosheet Arrays as Robust Electrocatalyst for pH-Universal Hydrogen Evolution Reaction[J]. ACS Sustainable Chem Eng,2019,7(10):9309-9317. [30] Li H,Li Q,Wen P,et al. Colloidal Cobalt Phosphide Nanocrystals as Trifunctional Electrocatalysts for Overall Water Splitting Powered by a Zinc-Air Battery[J]. Adv Mater,2018,30(9):1538-1547. [31] Liu P,Rodriguez J A. Catalysts for Hydrogen Evolution from the NiFe Hydrogenase to the Ni2P (001) Surface:The Importance of Ensemble Effect[J]. J Am Chem Soc,2005,127(42):14871-14878. [32] McCrory C C L,Jung S,Ferrer I M,et al. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices[J]. J Am Chem Soc,2015,137(13):4347-4357. [33] McKone J R,Marinescu S C,Brunschwig B S,et al. Earth-Abundant Hydrogen Evolution Electrocatalysts[J]. Chem Sci,2014,5(3):865-878. [34] Zhang Y,Liu Y,Ma M,et al. A Mn-Doped Ni2P Nanosheet Array:An Efficient and Durable Hydrogen Evolution Reaction Electrocatalyst in Alkaline Media[J]. Chem Commun,2017,53(80):11048-11051. [35] Zhang Z,Jiang Y,Zheng X,et al. Electrodepositing Ultra-Thin Ni(OH)2 Amorphous Film on Ni2P Nanosheets Array:An Efficient Strategy Toward Greatly Enhanced Alkaline Hydrogen Evolution Reaction[J]. New J Chem,2018,42(14):11285-11288. [36] Senevirathne K,Burns A W,Bussell M E,et al. Synthesis and Characterization of Discrete Nickel Phosphide Nanoparticles:Effect of Surface Ligation Chemistry on Catalytic Hydrodesulfurization of Thiophene[J]. Adv Funct Mater,2007,17(18):3933-3939. [37] Feng L,Vrubel H,Bensimon M,et al. Easily-Prepared Dinickel Phosphide(Ni2P) Nanoparticles as an Efficient and Robust Electrocatalyst for Hydrogen Evolution[J]. Phys Chem Chem Phys,2014,16(13):5917-5921. [38] Yan Q,Chen X,Wei T,et al. Hierarchical Edge-Rich Nickel Phosphide Nanosheet Arrays as Efficient Electrocatalysts Toward Hydrogen Evolution in both Alkaline and Acidic Conditions[J]. ACS Sustainable Chem Eng,2019,7(8):7804-7811. [39] Zhang L,Ren X,Guo X,et al. Efficient Hydrogen Evolution Electrocatalysis at Alkaline pH by Interface Engineering of Ni2P-CeO2[J]. Inorg Chem,2018,57(2):548-552. [40] Yang F,Kang N,Yan J,et al. Hydrogen Evolution Reaction Property of Molybdenum Disulfide/Nickel Phosphide Hybrids in Alkaline Solution[J]. Metals,2018,8(5):3521-3530. [41] Du H,Xia L,Zhu S,et al. Al-Doped Ni2P Nanosheet Array:A Superior and Durable Electrocatalyst for Alkaline Hydrogen Evolution[J]. Chem Commun,2018,54(23):2894-2897. [42] Mu J,Li J,Yang E C,et al. Three-Dimensional Hierarchical Nickel Cobalt Phosphide Nanoflowers as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction under Both Acidic and Alkaline Conditions[J]. ACS Appl Energy Mater,2018,1(8):3742-3751. [43] Liang D,Jiang H,Xu Q,et al. Modulating the Volmer Step by MOF Derivatives Assembled with Heterogeneous Ni2P-CoP Nanocrystals in Alkaline Hydrogen Evolution Reaction[J]. J Electrochem Soc,2018,165(16):1286-1291. [44] Liu C,Gong T,Zhang J,et al. Engineering Ni2P-NiSe2 Heterostructure Interface for Highly Efficient Alkaline Hydrogen Evolution[J]. Appl Catal B-Environ,2020,262(27):13251-13259. [45] Laursen A B,Patraju K R,Whitaker M J,et al. Nanocrystalline Ni5P4:A Hydrogen Evolution Electrocatalyst of Exceptional Efficiency in both Alkaline and Acidic Media[J]. Energy Environ Sci,2015,8(3):1027-1034. [46] Yang F, Huang S, Zhang B,et al. Facile Synthesis of Well-Dispersed Ni2P on N-Doped Nanomesh Carbon Matrix as a High-Efficiency Electrocatalyst for Alkaline Hydrogen Evolution Reaction[J]. Nanomaterials,2019,9(7):43251-43260. [47] Wang X,Kolen′ko Y V,Liu L. Direct Solvothermal Phosphorization of Nickel Foam to Fabricate Integrated Ni2P-Nanorods/Ni Electrodes for Efficient Electrocatalytic Hydrogen Evolution[J]. Chem Commun,2015,51(31):6738-6741. [48] Ma Z,Li R,Wang M,et al. Self-supported Porous Ni-Fe-P Composite as an Efficient Electrocatalyst for Hydrogen Evolution Reaction in Both Acidic and Alkaline Medium[J]. Electrochim Acta,2016,219(17):194-203. [49] Read C G,Callejas J F,Holder C F,et al. General Strategy for the Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution[J]. ACS Appl Mater Interfaces,2016,8(20):12798-12803. [50] Jin X,Li J,Cui Y,et al. Cu3P-Ni2P Hybrid Hexagonal Nanosheet Arrays for Efficient Hydrogen Evolution Reaction in Alkaline Solution[J]. Inorg Chem,2019,58(17):11630-11635. [51] Ledendecker M,Calderon S K,Papp C,et al. The Synthesis of Nanostructured Ni5P4 Films and Their Use as a Non-noble Bifunctional Electrocatalyst for Full Water Splitting[J]. Angew Chem Int Edit,2015,54(42):12361-12365. [52] Wan L,Zhang J F,Chen Y Q,et al. Varied Hydrogen Evolution Reaction Properties of Nickel Phosphide Nanoparticles with Different Compositions in Acidic and Alkaline Conditions[J]. J Mater Sci,2017,52(2):804-814. [53] Pan Y,Liu Y,Zhao J,et al. Monodispersed Nickel Phosphide Nanocrystals with Different Phases:Synthesis, Characterization and Electrocatalytic Properties for Hydrogen Evolution[J]. J Mater Chem A,2015,3(4):1656-1665. [54] Pan Y,Lin Y,Chen Y,et al. Cobalt Phosphide-Based Electrocatalysts:Synthesis and Phase Catalytic Activity Comparison for Hydrogen Evolution[J]. J Mater Chem A,2016,4(13):4745-4754. [55] Wei M,Yang L,Wang L,et al. In-Situ Potentiostatic Activation to Optimize Electrodeposited Cobalt-Phosphide Electrocatalyst for Highly Efficient Hydrogen Evolution in Alkaline Media[J]. Chem Phys Lett,2017,681(9):92-104. [56] Sobhani A,Salavati-Niasari M. Synthesis of Co2P/Co Nanocomposites Using Single Source Precursor by Thermal Decomposition Method[J]. J Mater Sci-Mater Electron,2016,27(4):3271-3280. [57] Xu K,Ding H,Zhang M,et al. Regulating Water-Reduction Kinetics in Cobalt Phosphide for Enhancing HER Catalytic Activity in Alkaline Solution[J]. Adv Mater,2017,29(28):1470-1481. [58] Hei P,Shu C,Hou Z,et al. Iron Doped CoP Nanowires on Carbon Cloth:An Efficient and Stable Electrocatalyst for Li-O2 Battery[J]. J Alloy Compd,2020,820(23):1325-1334. [59] Zhang R,Wang X,Yu S,et al. Ternary NiCo2Px Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction[J]. Adv Mater,2017,29(9):2586-2594. [60] Xu K,Cheng H,Liu L,et al. Promoting Active Species Generation by Electrochemical Activation in Alkaline Media for Efficient Electrocatalytic Oxygen Evolution in Neutral Media[J]. Nano Lett,2017,17(1):578-583. [61] Li W,Zhang S,Fan Q,et al. Hierarchically Scaffolded CoP/CoP2 Nanoparticles: Controllable Synthesis and Their Application as a Well-Matched Bifunctional Electrocatalyst for Overall Water Splitting[J]. Nanoscale,2017,9(17):5677-5685. [62] Zhang L,Ding X,Cong M,et al. Self-adaptive Amorphous Co2P@Co2P/Co Polyoxometalate/Nickel Foam as an Effective Electrode for Electrocatalytic Water Splitting in Alkaline Electrolyte[J]. Int J Hydrogen Energy,2019,44(18):9203-9209. [63] Popczun E J,Read C G,Roske C W,et al. Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles[J]. Angew Chem Int Edit,2014,53(21):5427-5430. [64] Han Y,Li P,Tian Z,et al. Molybdenum-Doped Porous Cobalt Phosphide Nanosheets for Efficient Alkaline Hydrogen Evolution[J]. ACS Appl Energy Mater,2019,2(9):6302-6310. [65] Zhang Y,Gao L,Hensen E J M,et al. Evaluating the Stability of Co2P Electrocatalysts in the Hydrogen Evolution Reaction for both Acidic and Alkaline Electrolytes[J]. ACS Energy Lett,2018,3(6):1360-1365. [66] Peng X,Qasim A M,Jin W,et al. Ni-Doped Amorphous Iron Phosphide Nanoparticles on TiN Nanowire Arrays:An Advanced Alkaline Hydrogen Evolution Electrocatalyst[J]. Nano Energy,2018,53(12):66-73. [67] Son C Y,Kwak I H,Lim Y R,et al. FeP and FeP2 Nanowires for Efficient Electrocatalytic Hydrogen Evolution Reaction[J]. Chem Commun,2016,52(13):2819-2822. [68] Zhao X,Zhang Z,Cao X,et al. Elucidating the Sources of Activity and Stability of FeP Electrocatalyst for Hydrogen Evolution Reactions in Acidic and Alkaline Media[J]. Appl Catal B-Environ,2020,260(24):584-593. [69] Liang Y,Liu Q,Asiri A M,et al. Self-Supported FeP Nanorod Arrays:A Cost-Effective 3D Hydrogen Evolution Cathode with High Catalytic Activity[J]. ACS Catal,2014,4(11):4065-4069. [70] Grosvenor A P,Wik S D,Cavell R G,et al. Examination of the Bonding in Binary Transiton-Metal Mono-phosphides MP(M=Cr,Mn,Fe,Co) by X-Ray Photoelectron Spectroscopy[J]. Inorg Chem,2005,44(24):8988-8998. [71] Zhang Z,Lu B,Hao J,et al. FeP Nanoparticles Grown on Graphene Sheets as Highly Active Non-Precious-Metal Electrocatalysts for Hydrogen Evolution Reaction[J]. Chem Commun,2014,50(78):11554-11557. |
[1] | 李慧慧, 姚开胜, 赵亚南, 范李娜, 田钰琳, 卢伟伟. 离子液体调控合成Pt-Pd双金属纳米材料及其催化氨硼烷水解释氢[J]. 应用化学, 2023, 40(4): 597-609. |
[2] | 王路飞, 甄蒙蒙, 沈伯雄. 贫电解液下电催化剂对调控锂硫电池性能的研究进展[J]. 应用化学, 2023, 40(2): 188-209. |
[3] | 柳小虎, 赖小娟, 曹红燕, 王婷婷, 党志强. 起泡剂/稳泡剂/SiO2复合泡沫缓速酸液体系协同增效性能[J]. 应用化学, 2023, 40(1): 91-99. |
[4] | 杜卫民, 刘欣, 朱琳, 付佳敏, 郭文山, 杨晓晴, 双培硕. 三元镍基硫属化物纳米棒阵列的简单合成及其高效的电催化析氧性能[J]. 应用化学, 2022, 39(8): 1252-1261. |
[5] | 张超. 单原子催化剂电催化还原二氧化碳研究进展[J]. 应用化学, 2022, 39(6): 871-887. |
[6] | 王岩, 张树聪, 汪兴坤, 刘志承, 王焕磊, 黄明华. 电解海水析氢反应过渡金属基催化剂的研究进展[J]. 应用化学, 2022, 39(6): 927-940. |
[7] | 曹维锦, 白璐, 武兰兰, 李敬德, 宋术岩. 多壳层中空镍钴双金属磷化物纳米球用于高效电催化析氧[J]. 应用化学, 2022, 39(4): 666-672. |
[8] | 商林杰, 刘江, 兰亚乾. 共价有机框架材料用于光/电催化CO2还原的研究进展[J]. 应用化学, 2022, 39(4): 559-584. |
[9] | 张艺潆, 李翠艳, 赵杰, 余笑明, 方千荣. 卟啉-硫醚基共价有机框架材料用于氧还原反应电催化剂[J]. 应用化学, 2022, 39(4): 647-656. |
[10] | 孙立智, 吕浩, 闵晓文, 刘犇. 介孔钯-硼合金纳米颗粒的制备和甲醇氧化电催化性能[J]. 应用化学, 2022, 39(4): 673-684. |
[11] | 吴小峰, 陈德顺, 马伟, 黄科科. 电喷雾沉积WO3/Fe2TiO5复合光阳极及其光电催化水裂解性能[J]. 应用化学, 2022, 39(4): 694-696. |
[12] | 杜慧, 姚晨阳, 彭皓, 姜波, 李顺祥, 姚俊烈, 郑方, 杨方, 吴爱国. 过渡金属掺杂磁性纳米粒子在生物医学领域中的研究进展[J]. 应用化学, 2022, 39(3): 391-406. |
[13] | 赵春梅, 周秀苗, 金茜茜, 王雨杭, 党祎静. 基于马鞍形环八四噻吩的复合纳米材料的制备及发光性能[J]. 应用化学, 2022, 39(02): 283-288. |
[14] | 黄晓桐, 陈颖欣, 朱泽滨, 周丽华. 基于纳米材料光谱分析法检测抗坏血酸的研究进展[J]. 应用化学, 2021, 38(6): 637-650. |
[15] | 刘娇, 邹鹏飞, 李平, 张潇, 王欣欣, 高媛媛, 李莉莉. 多肽类自组装纳米材料对抗细菌耐药的研究进展[J]. 应用化学, 2021, 38(5): 546-558. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||