[1] | LIU Zhixun,LIU Zhenqi,HUANG Wenhui. The Key Countermeasures of Controlling Fossil Fuel Environment Pollution in China[J]. Res Ind,2005,7(5):53-56(in Chinese). 刘志逊,刘珍奇,黄文辉. 中国化石燃料环境污染治理重点及措施[J]. 资源与产业,2005,7(5):53-56. | [2] | Das M C,Xu H,Wang Z, et al. A Zn4O-Containing Doubly Interpenetrated Porous Metal-Organic Framework for Photocatalytic Decomposition of Methyl Orange[J]. Chem Commun,2011,47(42):11715-11717. | [3] | AN Liancai,HAN Jiufang,ZHANG Yinghui, et al. Research and Application Progress on Porous Organic Polymers for Adsorption and Separation of Organic Pollutants in Water System[J]. Chinese J Appl Chem,2018,35(9):1019-1025(in Chinese). 安连财,韩久放,章应辉,等. 多孔有机聚合物吸附分离水体系中有机污染物研究和应用进展[J]. 应用化学,2018,35(9):52-58. | [4] | Mueller U,Schubert M,Teich F, et al. Metal-Organic Frameworks-Prospective Industrial Applications[J]. J Mater Chem,2006,16(7):626-636. | [5] | Wójcik J,Peszke J,Ratuszna A, et al. Theoretical Investigation of Porphyrin-Based Photosensitizers with Enhanced NIR Absorption[J]. Phys Chem Chem Phys,2013,15(45):19651-19658. | [6] | WANG Pan,LUO Guangfu,CAO Tingting, et al. Properties and Photocatalytic Mechanism of Porphyrin and Metal Porphyrin[J]. J China Three Gorges Univ(Nat Sci),2011,33(5):84-92(in Chinese). 王攀,罗光富,曹婷婷,等. 金属卟啉类化合物特性及光催化机理与应用研究[J]. 三峡大学学报(自然科学版),2011,33(5):84-92. | [7] | Luo Y,Li J,Yao G, et al. Influence of Polarity of the Peripheral Substituents of Porphyrin Molecules on the Photocatalytic Activity of Cu(II) Porphyrin Modified TiO2 Composites[J]. Catal Sci Technol,2012,2(4):841-846. | [8] | HE Jie,SHEN Jiangjian,LENG Hui, et al. Study on Different Metalloporphyrins for Photocatalytic Degradation of Methylene Blue Solution[J]. Chem Bioeng,2011,28(5):67-69(in Chinese). 何洁,沈江剑,冷慧,等. 不同金属卟啉光催化降解亚甲基蓝性能研究[J]. 化学与生物工程,2011,28(5):67-69. | [9] | LI Chuanqiang,LIU Wenmei,HOU Fangbiao,et al. Photocatalytic Degradation of 4-Nitrophenal over Metalloporphyrin with Different Peripheral Ligands[J]. Chem Bioeng,2016,(10):12-17(in Chinese). 李传强,刘文枚,侯芳标,等. 外围带不同基团的金属卟啉对4-硝基苯酚的光催化降解性能[J]. 化学与生物工程,2016,(10):12-17. | [10] | Zhang Z,Zhu Y,Chen X, et al. A Full-Spectrum Metal-Free Porphyrin Supramolecular Photocatalyst for Dual Functions of Highly Efficient Hydrogen and Oxygen Evolution[J]. Adv Mater,2019,31(7):1806626. | [11] | Cai J H,Ye Y J,Huang J W, et al. Synthesis, Characterization and Visible-Light Photocatalytic Activity of TiO2-SiO2 Composite Modified with Zinc Porphyrins[J]. J Sol-Gel Sci Technol,2012,62(3):432-440. | [12] | XIONG Xueyao. Research Progress of Porphyrin TiO2Composite Pohotocatalyst[J]. Shanxi Chem Ind,2016,36(2):54-57(in Chinese). 熊雪瑶. 卟啉-TiO2合光敏催化剂的研究进展[J]. 山西化工,2016,36(2):54-57. | [13] | Jiao L,Wang Y,Jiang H L, et al. Metal-Organic Frameworks as Platforms for Catalytic Applications[J]. Adv Mater,2018,30(37):1703663. | [14] | Wu C D,Hu A,Zhang L, et al. A HomochiralPorous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis[J]. J Am Chem Soc,2005,127(25):8940-8941. | [15] | Liu X T,Wang K,Chang Z, et al. Engineering Donor-Acceptor Heterostructure Crystals for Photonic Logic Computation[J]. Angew Chem Int Ed,2019,58(39):13890-13896. | [16] | Cote A P,Benin A I,Ockwig N W, et al. Porous Crystalline Covalent Organic Frameworks[J]. Science,2005,310(5751):1166-1170. | [17] | Chen R,Shi J L,Ma Y, et al. Designed Synthesis of A 2D Porphyrin-Based sp2 Carbon-Conjugated Covalent Organic Framework for Heterogeneous Photocatalysis[J]. Angew Chem Int Ed,2019,58(19):6430-6434. | [18] | Van de Voorde B,Bueken B,Denayer J,et al. Adsorptive Separation on Metal-Organic Frameworks in the Liquid Phase[J]. Chem Soc Rev,2014,43(16):5766-5788. | [19] | Li J R,Kuppler R J,Zhou H C. Selective Gas Adsorption and Separation in Metal-Organic Frameworks[J]. Chem Soc Rev,2009,38(5):1477-1504. | [20] | CHEN Diming. Research Progress of Multi-Scale Porous Metal-Organic Frameworks Materials for Gas Storage and Separation[J]. J Light Ind,2017,32(5):32-41(in Chinese). 陈迪明. 多尺度孔道型金属-有机框架材料气体储存与分离功能研究进展[J]. 轻工学报,2017,32(5):32-41. | [21] | Long J R,Yaghi O M. The Pervasive Chemistry of Metal-Organic Frameworks[J]. Chem Soc Rev,2009,38(5):1213-1214. | [22] | Cui Y,Li B,He H, et al. Metal Organic Frameworks as Platforms for Functional Materials[J]. Acc Chem Res,2016,49(3):483-493. | [23] | Lv X L,Wang K,Wang B, et al. A Base-Resistant Metalloporphyrin Metal-Organic Framework for C—H Bond Halogenation[J]. J Am Chem Soc,2017,139(1):211-217. | [24] | Hamad S,Hernandez N C,Aziz A, et al. Electronic Structure of Porphyrin-Based Metal-Organic Frameworks and Their Suitability for Solar Fuel Production Photocatalysis[J]. J Mater Chem A,2015,3(46):23458-23465. | [25] | Fateeva A,Chater P A,Ireland C P, et al. A Water-Stable Porphyrin-Based Metal-Organic Framework Active for Visible-Light Photocatalysis[J]. Angew Chem Int Ed,2012,51(30):7440-7444. | [26] | Wilcox O T,Fateeva A,Katsoulidis A P, et al. Acid Loaded Porphyrin-Based Metal-Organic Framework for Ammonia Uptake[J]. Chem Commun,2015,51(81):14989-14991. | [27] | Liu Y,Yang Y,Sun Q, et al. Chemical Adsorption Enhanced CO2 Capture and Photoreduction over a Copper Porphyrin-Based Metal Organic Framework[J]. ACS Appl Mater Interfaces,2013,5(15):7654-7658. | [28] | Liu J,Fan Y Z,Li X, et al. A Porous Rhodium(III)-Porphyrin Metal-Organic Framework as an Efficient and Selective Photocatalyst for CO2 Reduction[J]. Appl Catal B:Environ,2018,231:173-181. | [29] | Johnson J A,Luo J,Zhang X, et al. Porphyrin-Metalation-Mediated Tuning of Photoredox Catalytic Properties in Metal-Organic Frameworks[J]. ACS Catal,2015,5(9):5283-5291. | [30] | Johnson J A,Zhang X,Reeson T C, et al. Facile Control of the Charge Density and Photocatalytic Activity of an Anionic Indium Porphyrin Framework via in situ Metalation[J]. J Am Chem Soc,2014,136(45):15881-15884. | [31] | Aziz A, Ruiz-Salvador A R, Hernández N C, et al. Porphyrin-Based Metal-Organic Frameworks for Solar Fuel Synthesis Photocatalysis:Band Gap Tuning via Iron Substitutions[J]. J Mater Chem A,2017,5(23):11894-11904. | [32] | Sadeghi N,Sharifnia S,Do T O. Optimization and Modeling of CO2 Photoconversion Using a Response Surface Methodology with Porphyrin-Based Metal Organic Framework[J]. React Kinet, Mech Catal,2018,125(1):411-431. | [33] | Deenadayalan M S,Sharma N,Verma P K, et al. Visible-Light-Assisted Photocatalytic Reduction of Nitroaromatics by Recyclable Ni(II)-Porphyrin Metal Organic Framework(MOF) at RT[J]. Inorg Chem,2016,55(11):5320-5327. | [34] | Sharma N,Dhankhar S S,Nagaraja C M. A Mn(II)-Porphyrin Based Metal-Organic Framework(MOF) for Visible-Light-Assisted Cycloaddition of Carbon Dioxide with Epoxides[J]. Micropor Mesopor Mater,2019,280:372-378. | [35] | Sadeghi N,Sharifnia S,Arabi M S. A Porphyrin-Based Metal Organic Framework for High Rate Photoreduction of CO2 to CH4 in Gas Phase[J]. J CO2 Util,2016,16:450-457. | [36] | Ye L,Gao Y,Cao S, et al. Assembly of Highly Efficient Photocatalytic CO2 Conversion Systems with Ultrathin Two-Dimensional Metal Organic Framework Nanosheets[J]. Appl Catal B:Environ,2018,227:54-60. | [37] | Yuan S,Liu T F,Feng D, et al. A Single Crystalline Porphyrinic Titanium Metal-Organic Framework[J]. Chem Sci,2015,6(7):3926-3930. | [38] | Wang X,Zhang X,Zhou W, et al. An Ultrathin Porphyrin-Based Metal-Organic Framework for Efficient Photocatalytic Hydrogen Evolution under Visible Light[J]. Nano Energy,2019,62:250-258. | [39] | Sadeghi N,Sharifnia S,Do T O. Enhanced CO2 Photoreduction by a Graphene-Porphyrin Metal-Organic Framework under Visible Light Irradiation[J]. J Mater Chem A,2018,6(37):18031-18035. | [40] | Feng D,Gu Z Y,Li J R,et al. Zirconium-Metalloporphyrin PCN-222:Mesoporous Metal-Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts[J]. Angew Chem Int Ed,2012,51(41):10307-10310 | [41] | Sasan K,Lin Q,Mao C Y, et al. Incorporation of Iron Hydrogenase Active Sites into a Highly Stable Metal-Organic Framework for Photocatalytic Hydrogen Generation[J]. Chem Commun,2014,50(72):10390-10393. | [42] | Zhao Y,Dong Y,Lu F, et al. Coordinative Integration of a Metal-PorphyrinicFramework and TiO2 Nanoparticles for the Formation of Composite Photocatalysts with Enhanced Visible-Light-Driven Photocatalytic Activities[J]. J Mater Chem A,2017,5(29):15380-15389. | [43] | Chen L,Wang Y,Yu F, et al. A Simple Strategy for Engineering Heterostructures of Au Nanoparticle-Loaded Metal-Organic Framework Nanosheets to Achieve Plasmon-Enhanced Photocatalytic CO2 Conversion under Visible Light[J]. J Mater Chem A,2019,7(18):11355-11361. | [44] | Feng X,Liu L,Honsho Y, et al. High-Rate Charge-Carrier Transport in Porphyrin Covalent Organic Frameworks: Switching from Hole to Electron to Ambipolar Conduction[J]. Angew Chem Int Ed,2012,51(11):2618-2622. | [45] | Liu W,Li X,Wang C, et al. A Scalable General Synthetic Approach Towards Ultrathin Imine-Linked Two-Dimensional Covalent Organic Framework Nanosheets for Photocatalytic CO2 Reduction[J]. J Am Chem Soc,2019,141(43):17431-17440. | [46] | Lu M,Liu J,Li Q, et al. Rational Design of Crystalline Covalent Organic Frameworks for Efficient CO2 Photoreduction with H2O[J]. Angew Chem,2019,58(36):12393-12397. | [47] | Hou Y,Cui C X,Zhang E, et al. A Hybrid of g-C3N4 and Porphyrin-Based Covalent Organic Frameworks via Liquid-Assisted Grinding for Enhanced Visible-Light-Driven Photoactivity[J]. Dalton Trans,2019,48(40):14989-14995. | [48] | Yang W,Li B,Wang H, et al. A Microporous Porphyrin-Based Hydrogen-Bonded Organic Framework for Gas Separation[J]. Cryst Growth Des,2015,15(4):2000-2004. | [49] | Yin Q, L J, Li H F, et al. A Robust Microporous Porphyrin-based Hydrogen-Bonded Organic Framework for Highly Selective Separation of C2 Hydrocarbons Versus Methane[J]. Cryst Growth Des,2019,19(7):4157-4161. | [50] | Luo Y H,He X T,Hong D L, et al. A Dynamic 3D Hydrogen-Bonded Organic Frameworks with Highly Water Affinity[J]. Adv Funct Mater,2018,28(48):1804822. | [51] | Zhang Z,Li J,Yao Y, et al. Permanently Porous Co(II) Porphyrin-Based Hydrogen Bonded Framework for Gas Adsorption and Catalysis[J]. Cryst Growth Des,2015,15(10):5028-5033. | [52] | Wang B,Xie Z,Li Y, et al. Dual-Functional Conjugated NanoporousPolymres for Efficient Organic Pollutants Treatment in Water:A Synergistic Strategy of Adsorption and Photocatalysis[J]. Macromolecules,2018,51(9):3443-3449. | [53] | Zhang H J,Wang J H,Zhang Y H, et al. Hollow Porous Organic Polymer: High-Performance Adsorption for Organic Dye in Aqueous Solution[J]. J Polym Sci A-Polym Chem,2017,55(8):1329-1337. | [54] | Mukherjee G,Thote J,Aiyappa H B, et al. A Porous Porphyrin Organic Polymer(PPOP) for Visible Light Triggered Hydrogen Production[J]. Chem Commun,2017,53(32):4461-4464. | [55] | Chen Z,Wang J,Zhang S, et al. Porphyrin-Based Conjugated Polymers as Intrinsic Semiconducting Photocatalysts for Robust H2 Generation under Visible Light[J]. ACS Appl Energy Mater,2019,2(8):5665-5676. | [56] | Zhang Z,Zhu Y,Chen X, et al. A Full‐Spectrum Metal-Free Porphyrin Supramolecular Photocatalyst for Dual Functions of Highly Efficient Hydrogen and Oxygen Evolution[J]. Adv Mater,2019,31(7):1806626. | [57] | Wang N,Cheng G,Guo L, et al. Hollow Covalent Triazine Frameworks with Variable Shell Thickness and Morphology[J]. Adv Funct Mater,2019,29(43):1904781. |
|