[1] | Chen D,Lou Z,Jiang K, et al. Device Configurations and Future Prospects of Flexible/ Stretchable Lithium-Ion Batteries[J]. Adv Funct Mater,2018,28(51):1805596. | [2] | Cha H,Lee Y,Kim J, et al. Flexible 3D Interlocking Lithium-Ion Batteries[J]. Adv Energy Mater,2018,8(30):1801917. | [3] | Qian G,Zhu B,Liao X, et al. Bioinspired, Spine-Like, Flexible, Rechargeable Lithium-Ion Batteries with High Energy Density[J]. Adv Mater,2018,31(12):1704947. | [4] | Ji D,Fan L,Li L, et al. Atomically Transition Metals on Self-Supported Porous Carbon Flake Arrays as Binder-Free Air Cathode for Wearable Zinc-Air Batteries[J]. Adv Mater,2019,31(16):1808267. | [5] | XU Yuzhong,DONG Yongfen,TAN Licheng, et al. Block Copolymer Electrolytes for Lithium Batteries[J]. Chinese J Appl Chem,2017,34(3):245-261(in Chinese). 许裕忠,董永芬,谈利承,等. 锂电池用嵌段共聚物电解质的研究进展[J]. 应用化学,2017,34(3):245-261. | [6] | Zhou G M,Li F,Cheng H. Progress in Flexible Lithium Batteries and Future Prospects[J]. Energy Environ Sci,2014,7(4):1307-1338. | [7] | ZHANG Kai,BAI Hongmei,CHENG Fangyi, et al. Preparation of Sn Films by Vacuum Evaporation and Their Electrochemical Properties as Lithium-Storage Materials[J]. Chinese J Appl Chem,2011,28(8):918-923(in Chinese). 张凯,白红美,程方益,等. 真空蒸镀法制备锡薄膜及其嵌锂电化学性能[J]. 应用化学,2011,28(8):918-923. | [8] | YAN Bing,XIONG Wenxu,ZHENG Shibing, et al. Single-Walled Carbon Nanotubes Enhanced Electrochemical Performance of High-Capacity Organic Cathode Composites Calix [4] quinone/Mesporous Carbon CMK-3 for Li-Ion Batteries[J]. Chinese J Appl Chem,2019,36(5):554-563(in Chinese). 闫冰,熊文旭,郑仕兵,等. 单壁碳纳米管提升正极复合材料杯[4]醌/介孔碳CMK-3储锂性能[J]. 应用化学,2019,36(5):554-563. | [9] | Wang T,Shi S J,Li Y, et al. Study of Microstructure Change of Carbon Nanofibers as Binder-Free Anode for High-Performance Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces,2016,8(48):33091-33101. | [10] | Chao D,Zhu C,Xia X, et al. Graphene Quantum Dots Coated VO2 Arrays for Highly Durable Electrodes for Li and Na Ion Batteries[J]. Nano Lett,2015,15(1):565-573. | [11] | Wang W,Xu Q,Liu H, et al. A Flexible Symmetric Sodium Full Cell Constructed Using the Bipolar Material Na3V2(PO4)3[J]. J Mater Chem A,2017,5(18):8440-8450. | [12] | Ding Y L,Wu C,Kopold P, et al. Graphene-Protected 3D Sb-Based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage[J]. Small,2015,11(45):6026-6035. | [13] | Xia X,Xie J,Zhang S, et al. Ni3S2 Nanosheet-Anchored Carbon Submicron Tube Arrays as High-Performance Binder-Free Anodes for Na-Ion Batteries[J]. Inorg Chem Front,2017,4(1):131-138. | [14] | Wang K,Huang Y,Wang M, et al. PVD Amorphous Carbon Coated 3D NiCo2O4 on Carbon Cloth as Flexible Electrode for Both Sodium and Lithium Storage[J]. Carbon,2017,125:375-383. | [15] | Xu S,Yao Y,Guo Y, et al. Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways[J]. Adv Mater,2018,30(4):1704907. | [16] | Fei J,Cui Y,Li J, et al. A Flexible Sb2O3/Carbon Cloth Composite as a Free-Standing High Performance Anode for Sodium Ion Batteries[J]. Chem Commun,2017,53(98):13165-13167. | [17] | Liu S,Luo Z,Tian G, et al. TiO2 Nanorods Grown on Carbon Fiber Cloth as Binder-Free Electrode for Sodium-ion Batteries and Flexible Sodium-Ion Capacitors[J]. J Power Sources,2017,363:284-290. | [18] | Amin K,Meng Q,Ahmad A, et al. A Carbonyl Compound-Based Flexible Cathode with Superior Rate Performance and Cyclic Stability for Flexible Lithium-Ion Batteries[J]. Adv Mater,2018,30(4):1703868. | [19] | Zhang L L,Li Z,Yang X L, et al. Binder-free Li3V2(PO4)3/C Membrane Electrode Supported on 3D Nitrogen-Doped Carbon Fibers for High-Performance Lithium-Ion Batteries[J]. Nano Energy,2017,34:111-119. | [20] | Li X,Wu H,Elshahawy A M, et al. Cactus-Like NiCoP/NiCo-OH 3D Architecture with Tunable Composition for High-Performance Electrochemical Capacitors[J]. Adv Funct Mater,2018,28(20):1800036. | [21] | Liu Y,Yang Y,Wang X, et al. Flexible Paper-like Free-Standing Electrodes by Anchoring Ultrafine SnS2 Nanocrystals on Graphene Nanoribbons for High-Performance Sodium Ion Batteries[J]. ACS Appl Mater Interfaces,2017,9(18):15484-15491. | [22] | Liu Y,Zhang A,Shen C, et al. Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-fast Anode for Sodium-Ion Batteries[J]. ACS Nano,2017,11(6):5530-5537. | [23] | Liu Y,Zhang N,Yu C, et al. MnFe2O4@C Nanofibers as High-Performance Anode for Sodium-Ion Batteries[J]. Nano Lett,2016,16(5):3321-3328. | [24] | Islam M,Subramaniyam C,Akhter T, et al. Three Dimensional Cellular Architecture of Sulfur Doped Graphene:Self-standing Electrode for Flexible Supercapacitors, Lithium Ion and Sodium Ion Batteries[J]. J Mater Chem A,2017,5(11):5290-5302 | [25] | Hwang C,Song W,Han J, et al. Foldable Electrode Architectures Based on Silver-Nanowire- Wound or Carbon-Nanotube-Webbed Micrometer-Scale Fibers of Polyethylene Terephthalate Mats for Flexible Lithium-Ion Batteries[J]. Adv Mater,2018,30(7):1705445. | [26] | Pu X,Liu M,Li L, et al. Wearable Textile-Based In-Plane Microsupercapacitors[J]. Adv Energy Mater,2016,6(24):1601254. | [27] | Wang B,Liu X,Liu Q, et al. Three-Dimensional Non-woven Poly(Vinyl Alcohol-co-Ethylene) Nanofiber Based Polyaniline Flexible Electrode for High Performance Supercapacitor[J]. J Alloys Compd,2017,715:137-145. |
|