[1] | Armand M,Tarascon J M.Building Better Batteries[J]. Nature,2008,451(7179):652-657. | [2] | Goodenough J B,Kim Y.Challenges for Rechargeable Li Batteries[J]. Chem Mater,2010,22(3):587-603. | [3] | Xin S,Guo Y G,Wan L J.Nanocarbon Networks for Advanced Rechargeable Lithium Batteries[J]. Acc Chem Res,2012,45(10):1759-1769. | [4] | CHEN Lihui,WU Qiuhan,PAN Pei,et al. Spinel Lithium Manganese Oxide Octahedral Nanoparticles with Excellent Electrochemical Performance as Cathode Materials for Lithium-Ion Batteries[J]. Chinese J Appl Chem,2018,35(11):1384-1390(in Chinese). 陈丽辉,吴秋晗,潘佩,等. 尖晶石型八面体结构锰酸锂的制备及其电化学性能[J]. 应用化学,2018,35(11):1384-1390. | [5] | Zhou M,Qian J F,Ai X P,et al. Redox-Active Fe(CN)4-6-Doped Conducting Polymers with Greatly Enhanced Capacity as Cathode Materials for Li-Ion Batteries[J]. Adv Mater,2011,23(42):4913-4917. | [6] | Han X Y,Chang C X,Yuan L J,et al. Aromatic Carbonyl Derivative Polymers as High-Performance Li-Ion Storage Materials[J]. Adv Mater,2007,19(12):1616-1621. | [7] | Song Z P,Zhou H S.Towards Sustainable and Versatile Energy Storage Devices:An Overview of Organic Electrode Materials[J]. Energy Environ Sci,2013,6(8):2280-2301. | [8] | Nokami T,Matsuo T,Inatomi Y,et al. Polymer-Bound Pyrene-4,5,9,10-Tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High Capacity[J]. J Am Chem Soc,2012,134(48):19694-19700. | [9] | Song Z P,Qian Y M,Gordin M L,et al. Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage[J]. Angew Chem Int Ed,2015,54(47):13947-13951. | [10] | Xie J,Wang Z L,Gu P Y,et al. A Novel Quinone-Based Polymer Electrode for High Performance Lithium-Ion Batteries[J]. Sci China Mater,2016,59(1):6-11. | [11] | Larcher D,Tarascon J M.Towards Greener and More Sustainable Batteries for Electrical Energy Storage[J]. Nat Chem,2014,7(1):19-29. | [12] | Ma J,Zhou E,Fan C,et al. Endowing CuTCNQ with a New Role:A High-Capacity Cathode for K-Ion Batteries[J]. Chem Commun,2018,54(44):5578-5581. | [13] | Wang L P,Zhang H Q,Mou C X,et al. Dicarboxylate CaC8H4O4 as a High-Performance Anode for Li-Ion Batteries[J]. Nano Res,2015,8(2):523-532. | [14] | Zhang H Q,Deng Q J,Hou A J,et al. Porous Li2C8H4O4 Coated with N-Doped Carbon by Using CVD as an Anode Material for Li-Ion Batteries[J]. J Mater Chem A,2014,2(16):5696-5702. | [15] | Yang A K,Wang X C,Lu Y,et al. Core-Shell Structured 1,4-Benzoquinone@TiO2 Cathode for Lithium Batteries[J]. J Energy Chem,2018,27(6):1644-1650. | [16] | Visco S J,DeJonghe L C. Ionic Conductivity of Organosulfur Melts for Advanced Storage Electrodes[J]. J Electrochem Soc,1988,135(12):2905-2909. | [17] | Liu K,Zheng J M,Zhong G M,et al. Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide)(PDBS) as a Cathode Material for Lithium Ion Batteries[J]. J Mater Chem,2011,21(12):4125-4131. | [18] | Huang W W,Zhu Z Q,Wang L J,et al. Quasi-Solid-State Rechargeable Lithium-Ion Batteries with a Calix[4]quinone Cathode and Gel Polymer Electrolyte[J]. Angew Chem Int Ed,2013,52(35):9162-9166. | [19] | Zheng S B,Sun H M,Yan B,et al. High-Capacity Organic Electrode Material Calix[4]quinone/CMK-3 Nanocomposite for Lithium Batteries[J]. Sci China Mater,2018,61(10):1285-1290. | [20] | YAN Bing,XIONG Wenxu,ZHENG Shibing,et al. Single-Walled Carbon Nanotubes Enhanced Electrochemical Performance of High-Capacity Organic Cathode Composites Calix[4]quinone/Mesporous Carbon CMK-3 for Li-Ion Batteries[J]. Chinese J Appl Chem,2019,36(42):554-563(in Chinese). 闫冰,熊文旭,郑仕兵,等. 单壁碳纳米管提升正极复合材料杯[4]醌/介孔炭CMK-3储锂性能[J]. 应用化学,2019,36(42):554-563. | [21] | Ma Q L,Yu Y F,Sindoro M,et al. Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage[J]. Adv Mater,2017,29(13):1605361. | [22] | Xu J T,Wang M,Wickramaratne N P,et al. High-Performance Sodium Ion Batteries Based on a 3D Anode from Nitrogen-Doped Graphene Foams[J]. Adv Mater,2015,27(12):2042-2048. | [23] | YU Junfeng,CHEN Peirong,YU Zhimin,et al. Preparation and Characterization of Activated Carbon from Sawdust Bio-char by Chemical Activation with KOH[J]. Chinese J Appl Chem,2013,30(9):1017-1022(in Chinese). 余峻峰,陈培荣,俞志敏,等. KOH活化木屑生物炭制备活性炭及其表征[J]. 应用化学,2013,30(9):1017-1022. | [24] | Luo L B,Chen J J,Wang M Z,et al. Near-infrared Light Photovoltaic Detector Based on GaAs Nanocone Array/Monolayer Graphene Schottky Junction[J]. Adv Funct Mater,2014,24(19):2794-2800. | [25] | Gaddam R R,Yang D F,Narayan R,et al. Biomass Derived Carbon Nanoparticle as Anodes for High Performance Sodium and Lithium Ion Batteries[J]. Nano Energy,2016,26:346-352. | [26] | Cao Y L,Xiao L F,Sushko M L,et al. Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications[J]. Nano Lett,2012,12(7):3783-3787. | [27] | Yang T Z,Qian T,Wang M F,et al. A Sustainable Route from Biomass Byproduct Okara to High Content Nitrogen-Doped Carbon Sheets for Efficient Sodium Ion Batteries[J]. Adv Mater,2015,28(3):539-545. | [28] | LI Juntao,WU Jiaohong,ZHANG Tao,et al. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery[J]. Acta Phys-Chim Sin,2017,33(5):968-975(in Chinese). 李君涛,吴娇红,张涛,等. 不同生物炭材料的制备及其在Li-S电池中的应用[J]. 物理化学学报,2017,33(5):968-975. | [29] | Komaba S,Murata W,Ishikawa T,et al. Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries[J]. Adv Funct Mater,2011,21(20):3859-3867. | [30] | Luo W,Schardt J,Bommier C,et al. Carbon Nanofibers Derived from Cellulose Nanofibers as a Long-Life Anode Material for Rechargeable Sodium-Ion Batteries[J]. J Mater Chem A,2013,1(36):10662-10666. | [31] | Wang Y X,Chou S L,Liu H K,et al. Reduced Graphene Oxide with Superior Cycling Stability and Rate Capability for Sodium Storage[J]. Carbon,2013,57(1):202-208. | [32] | Xiao L F,Cao Y L, Henderson W A,et al. Hard Carbon Nanoparticles as High-Capacity, High-Stability Anodic Materials for Na-Ion Batteries[J]. Nano Energy,2015,19:279-288. | [33] | Yan N,Chen X.Sustainability: Don't Waste Seafood Waste[J]. Nature,2015,524(7564):155-157. | [34] | Ifuku S,Saimoto H.Chitin Nanofibers: Preparations, Modifications, and Applications[J]. Nanoscale,2012,4(11):3308-3318. | [35] | Duan B,Zheng X,Xia Z X,et al. Highly Biocompatible Nanofibrous Microspheres Self-assembled from Chitin in NaOH/Urea Aqueous Solution as Cell Carriers[J]. Angew Chem Int Ed,2015,54(17):5152-5156. | [36] | Hao R,Yang Y,Wang H,et al. Direct Chitin Conversion to N-Doped Amorphous Carbon Nanofibers for High-Performing Full Sodium-Ion Batteries[J]. Nano Energy,2017,45:220-228. | [37] | Gutowska A,Li L Y,Shin Y,et al. Nanoscaffold Mediates Hydrogen Release and the Reactivity of Ammonia Borane[J]. Angew Chem Int Ed,2005,44(23):3578-3582. | [38] | Xiong W X,Huang W W,Zhang M,et al. Pillar[5]quinone-Carbon Nanocomposites as High-Capacity Cathodes for Sodium-Ion Batteries[J]. Chem Mater,2019,31(19):8069-8075. | [39] | Huang W W,Zhang X Q,Zheng S B,et al.Calix[6]quinone as High-Performance Cathode for Lithium-Ion Battery[J]. Sci China Mater,2019-09-11[2019-09-16]. http://engine.scichina.com/publisher/scp/journal/SCMs/doi/10.1007/s40843-019-1185-2?slug=abstract. [published online ahead of print]. | [40] | Morita Y,Agawa T,Nomura E,et al. Syntheses and NMR Behavior of Calix[4]quinone and Calix[4]hydroquinone[J]. J Org Chem,1992,57(13):3658-3662. |
|