应用化学 ›› 2025, Vol. 42 ›› Issue (12): 1679-1690.DOI: 10.19894/j.issn.1000-0518.250082
苏海迪1, 陈士欣1, 田英2, 曹祖银1, 周鸿飞3, 夏春龙3, 崔博4, 邵慧敏4, 布乃顺1(
), 李丛3(
)
收稿日期:2025-02-27
接受日期:2025-09-08
出版日期:2025-12-01
发布日期:2025-12-30
通讯作者:
布乃顺,李丛
作者简介:19692248@qq.com基金资助:
Hai-Di SU1, Shi-Xin CHEN1, Ying TIAN2, Zu-Yin CAO1, Hong-Fei ZHOU3, Chun-Long XIA3, Bo CUI4, Hui-Min SHAO4, Nai-Shun BU1(
), Cong LI3(
)
Received:2025-02-27
Accepted:2025-09-08
Published:2025-12-01
Online:2025-12-30
Contact:
Nai-Shun BU,Cong LI
Supported by:摘要:
采用离子印迹策略构建具有特定键合几何结构的汞离子识别空腔,通过Suzuki偶联反应定向锚定在多孔芳香骨架(Porous aromatic frameworks, PAFs)上,得到一种新型PAFs材料(命名为LNU-21)。 采用傅里叶变换红外光谱(FT-IR)、X射线衍射分析(XRD)、扫描电子显微镜(SEM)和比表面积(BET)等方法对LNU-21进行表征,详细研究了LNU-21的形貌、吸附特性以及Hg2?检测性能。 实验结果表明,LNU-21因其具备特定识别空腔、高孔隙率以及π共轭体系等特性,能够实现对水中Hg2?离子检测和吸附的双功能应用。 在Hg2?离子浓度仅为4.8×10-5 mol/L的条件下,LNU-21表现出高达80%的荧光强度猝灭率。 在干扰离子存在的情况下,LNU-21对Hg2?离子的选择系数为10.83(Hg2+/Cu2+)~16.07(Hg2+/Ba2+)。 此外,LNU-21对Hg2?离子吸附动力学曲线与拟二级动力学方程拟合一致,表现出典型的化学吸附行为。 吸附热力学曲线符合Langmuir吸附模型,表明汞离子的吸附为特征单分子吸附。 LNU-21对Hg2?离子吸附容量可达150 mg/g且具有良好的回收能力(5个循环后去除率仍超过86%)。 本研究为制备能够同步检测和去除Hg2?离子的多孔材料提供了新思路,为含汞废水的处理提供实验支撑。
中图分类号:
苏海迪, 陈士欣, 田英, 曹祖银, 周鸿飞, 夏春龙, 崔博, 邵慧敏, 布乃顺, 李丛. 多孔芳香骨架离子印迹聚合物的制备及对汞的超灵敏检测和高效去除[J]. 应用化学, 2025, 42(12): 1679-1690.
Hai-Di SU, Shi-Xin CHEN, Ying TIAN, Zu-Yin CAO, Hong-Fei ZHOU, Chun-Long XIA, Bo CUI, Hui-Min SHAO, Nai-Shun BU, Cong LI. Preparation of Porous Aromatic Framework-Based Ion-Imprinted Polymers and Their Application for Ultrasensitive Detection and Efficient Removal of Mercury[J]. Chinese Journal of Applied Chemistry, 2025, 42(12): 1679-1690.
图2 LNU-21及其单体的红外光谱(A); LNU-21固体13C核磁图谱(B); LNU-21的XRD图谱(C); LNU-21的TGA曲线(D)
Fig.2 FT-IR spectra of LNU-21 and its monomers (A); Solid 13C NMR profile of LNU-21 (B); XRD pattern of LNU-21 powder (C); TGA curve of LNU-21 (D)
图5 LNU-21固体紫外光谱(A); LNU-21在不同溶剂中的荧光强度(B); LNU-21在不同浓度四氢呋喃溶剂中的荧光强度(C); LNU-21添加汞离子前后荧光强度(D)
Fig.5 UV spectrum of solid LNU-21 (A); Fluorescence intensity of LNU-21 in different solvents (B); Fluorescence intensity of LNU-21 in different concentrations of tetrahydrofuran solvents (C); Fluorescence intensity of LNU-21 before and after the addition of mercury ions (D)
图6 LNU-21的荧光选择性(A); 时间对Hg2+吸附量的影响(B); 拟二级动力学模型拟合(C)(插图: 拟一级动力学模型拟合); 韦伯-莫里斯模型拟合(D); 朗格缪尔和弗罗因德利希模型拟合(E); LNU-21的循环效率(F)
Fig.6 Fluorescence selectivity (A); Effect of time on the adsorption of Hg2+ (B); Fitting with the Pseudo-second-order kinetic model (C) (Inset: Fitting with the Pseudo-first-order kinetic model); Fitting with the Weibull-Morris model (D); Fitting with the Langmuir and Freundlich model (E); Recycling efficiency of LNU-21 (F)
| [1] | 韩晓刚, 严炜鑫, 王一鸣, 等. 一种重金属螯合吸附剂的制备及其对镍离子和六价铬的吸附性能[J]. 电镀与涂饰, 2024, 43(8): 142-150. |
| HAN X G, YAN W X, WANG Y M, et al. Preparation of a heavy metal chelating adsorbent and its adsorption properties for nickel ions and hexavalent chromium[J]. Electroplat Finish, 2024, 43(8): 142-150. | |
| [2] | 李军, 脱新颖, 马利邦, 等. 黄河兰州城区段饮用水源地土壤重金属污染生态与健康概率风险评估[J]. 环境化学, 2024, 43(11): 3746-3759. |
| LI J, TUO X Y, MA L B, et al. Probability risk assessment of soil heavy metal pollution in the drinking water source of the Lanzhou section of the Yellow River[J]. Environ Chem, 2024, 43(11): 3746-3759. | |
| [3] | SUN S, LI C X, ZHANG C, et al. Effect of sediments on bioaccumulation of mercury in fish body in the water-level-fluctuating zone of the Three Gorges Reservoir Area[J]. Environ Sci, 2017, 38(4): 1689-1696. |
| [4] | 庞子君, 覃智, 陈啊聪, 等. 污废水中污染物去除的功能材料研究进展:元素物质-合成改性-工艺工程的尺度效应[J]. 应用化学, 2024, 41(2): 190-216. |
| PANG Z J, TAN Z, CHEN A C, et al. Research progress on functional materials for pollutant removal in wastewater and wastewater: scale effects of elemental substances-synthetic modification-process engineering[J]. Chin J Appl Chem, 2024, 41(2): 190-216. | |
| [5] | 张涛, 王成尘, 李立新, 等. 食品中汞的人体生物有效性与健康危害研究[J]. 科学通报, 2024, 69(32): 4716-4729. |
| ZHANG T, WANG C C, LI L X, et al. Human bioavailability and health hazards of mercury in food[J]. Sci Bull, 2024, 69(32): 4716-4729. | |
| [6] | LIU N T, WU F, WANG D Y, et al. Mercury speciation, distribution, and potential sources in surface waters of the Yangtze and Yellow River source basins of tibetan plateau during Wet Season[J]. Environ Sci, 2022, 43(11): 5064-5072. |
| [7] | PAN K, XU J, LI F, et al. The association between mercury exposure during pregnancy and adverse birth outcomes: a systematic review and meta-analysis[J]. Environ Res, 2025, 264: 120357. |
| [8] | SALLES F J, PEREIRA E C, DE OLIVEIRA A S, et al. Blood mercury concentrations in preschool children and potential risk factors in São Paulo, Brazil[J]. Environ Pollut, 2024, 363: 125112. |
| [9] | DO AMARAL K D, SILVA G S, ARAÚJO A S, et al. Development of a novel method based on extraction mediated by a semipermeable membrane to determine Cd and Cr in sugar by graphite furnace atomic absorption spectrometry[J]. Food Chem, 2025, 463: 141527. |
| [10] | DE ALMEIDA T, NICOLAU A S, SCHIRRU R, et al. Development of a deep neural network and a PSO algorithm to predict ore hardness using X-ray diffraction and atomic emission spectroscopy[J]. Miner Eng, 2024, 213: 108760. |
| [11] | 左方涛, 徐威, 赵爱武. 基于功能化Fe3O4@Ag纳米粒子快速检测Hg2+的SERS方法[J]. 化学学报, 2019, 77(4): 379-386. |
| ZUO F T, XU W, ZHAO A W. SERS method for rapid detection of Hg2+ based on functionalized Fe3O4@Ag nanoparticles[J]. Acta Chim Sin, 2019, 77(4): 379-386. | |
| [12] | PANTHI G, PARK M. Synthesis of metal nanoclusters and their application in Hg2+ ions detection: a review[J]. J Hazard Mater, 2022, 424(Pt C): 127565. |
| [13] | LEERMAKERS M, BAEYENS W, QUEVAUVILLER P, et al. Mercury in environmental samples: speciation, artifacts and validation[J]. TrAC Trends Anal Chem, 2005, 24(5): 383-393. |
| [14] | SINGH H, BAMRAH A, BHARDWAJ S K, et al. Nanomaterial-based fluorescent sensors for the detection of lead ions[J]. J Hazard Mater, 2021, 407: 124379. |
| [15] | 周叶红, 张旭艺, 芦冬涛, 等. 基于氮化碳量子点/罗丹明B系统检测汞离子的比率荧光探针[J]. 应用化学, 2023, 40(11): 1550-1557. |
| ZHOU Y H, ZHANG X Y, LU D T, et al. Ratiometric fluorescent probe for the detection of mercury ions based on the carbon nitride quantum dots/rhodamine B system[J]. Chin J Appl Chem, 2023, 40(11): 1550-1557. | |
| [16] | 汪慧, 韩雍, 王应强. 可视化辅助碳点荧光比色法检测水中痕量汞离子[J]. 分析试验室, 2020, 39(2): 218-224. |
| WANG H, HAN Y, WANG Y Q. Visualization-assisted carbon dot fluorescence colorimetric detection of trace mercury ions in water[J]. Anal Labo, 2020, 39(2): 218-224. | |
| [17] | 严炜鑫, 王一鸣, 蔡建刚, 等. 重金属螯合吸附剂的制备和吸附性能研究[J]. 电镀与精饰, 2024, 46(9): 26-33. |
| YAN W X, WANG Y M, CAI J G, et al. Preparation and adsorption properties of heavy metal chelating adsorbents[J]. Plat Finish, 2024, 46(9): 26-33. | |
| [18] | 汪振文, 王会才, 杨继斌, 等. 吸附法去除水中重金属复合污染物的研究状况[J]. 稀有金属, 2020, 44(1): 87-99. |
| WANG Z W, WANG H C, YANG J B, et al. Research status on the removal of heavy metal composite pollutants in water by adsorption method[J]. Rare Met, 2020, 44(1): 87-99. | |
| [19] | DING S Y, DONG M, WANG Y W, et al. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(Ⅱ)[J]. J Am Chem Soc, 2016, 138(9): 3031-3037. |
| [20] | WANG X, LI Y, QIAN Y, et al. Mechanically robust atomic oxygen-resistant coatings capable of autonomously healing damage in low earth orbit space environment[J]. Adv Mater, 2018, 30(36): 1803854. |
| [21] | HE J, YEE K K, XU Z, et al. Thioether side chains improve the stability, fluorescence, and metal uptake of a metal-organic framework[J]. Chem Mater, 2011, 23(11): 2940-2947. |
| [22] | 郭勤, 张凯钧, 陈自娇, 等. 原位聚合包覆SiO2纳米纤维棉的制备及重金属吸附性能[J]. 硅酸盐通报, 2023, 42(11): 4082-4091. |
| GUO Q, ZHANG K J, CHEN Z J, et al. Preparation and heavy metal adsorption properties of in-situ polymerization coated SiO2 nanofiber cotton[J]. Silicate Bull, 2023, 42(11): 4082-4091. | |
| [23] | LI Q, SUN L, ZHANG Y, et al. Characteristics of equilibrium, kinetics studies for adsorption of Hg(Ⅱ) and Cr(Ⅵ) by polyaniline/humic acid composite[J]. Desalination, 2011, 266(1/2/3): 188-194. |
| [24] | DU Y J, LUO X Y, YE X H, et al. Molecular imprinted photoresponse hybrid biocatalyst for ultrasensitive glutamate detection[J]. Int J Biol Macromol, 2025, Mar 25: 142540. |
| [25] | ADAMPOUREZARE M, NAZHAD DOLATABADI J E, ASADPOUR-ZEYNALI K. An electrochemical paper-based microfluidic device modified with molecularly imprinted polymer-coated ZnFe2O4@MIL-101(Cr)@SiO2 for ultrasensitive and highly selective detection of streptomycin[J]. Microchem J, 2025, 212: 113168. |
| [26] | MONIER M, ELSAYED N H, ABDEL-LATIF D. Synthesis and application of ion-imprinted resin based on modified melamine-thiourea for selective removal of Hg(Ⅱ)[J]. Polym Int, 2015, 64(10): 1465-1474. |
| [27] | FU Q, ZHANG T, SUN X, et al. Pyridine-based covalent organic framework for efficient and selective removal of Hg(Ⅱ) from water: adsorption behavior and adsorption mechanism investigations[J]. Chem Eng J, 2023, 454: 140154. |
| [28] | YZE L H, YUSOF N A, MAAMOR N, et al. Fabrication and characterization of molecularly imprinted polymer for Hg(Ⅱ) ion[J]. Asian J Chem, 2014, 26(16): 5029-5032. |
| [29] | LIU S. Preparation of nanocellulose grafted molecularly imprinted polymer for selective adsorption Pb(Ⅱ) and Hg(Ⅱ)[J]. Chemosphere, 2023, 316: 137832. |
| [30] | ZHU Z, QIN Y, LIU S, et al. A novel COP adsorbent built up by thiophene group: rapid and selective adsorption toward trace hazardous Hg(Ⅱ)[J]. Sep Purif Technol, 2025, 353: 128482. |
| [31] | LI J, LIN G, ZENG B, et al. Enhanced Hg(Ⅱ) efficient and selective removal by post-functional Ti-MOF with 2,5 thiophene dicarboxylic acid[J]. Process Saf Environ Prot, 2023, 176: 696-705. |
| [32] | WANG L, LIU J, WANG J, et al. Bifunctional thiophene-based covalent organic frameworks for Hg2+ removal and I2 vapor adsorption[J]. Chem Eng J, 2023, 473: 145405. |
| [33] | HWU J R, BOHARA K P, KAPOOR M, et al. Generation of quaternary carbons in cycloalkanones and lactones with arynes through a domino process[J]. J Org Chem, 2024, 89(24): 18393-18399. |
| [34] | HOLST J R, STÖCKEL E, ADAMS D J, et al.. High surface area networks from tetrahedral monomers: metal-catalyzed coupling, thermal polymerization, and “click” chemistry[J]. Macromol, 2010, 43(20): 8531-8538. |
| [35] | WANG B, WU K, LIU T, et al. Feasible synthesis of bifunctional polysilsesquioxane microspheres for robust adsorption of Hg(Ⅱ) and Ag(Ⅰ): behavior and mechanism[J]. J Hazard Mater, 2023, 442: 130121. |
| [36] | YAN X, GE H. Preparation of metal organic frameworks modified chitosan composite with high capacity for Hg(Ⅱ) adsorption[J]. Int J Biol Macromol, 2023, 232: 123329. |
| [37] | WANG Z, ZHANG A, GUO Z, et al. Efficient Hg(Ⅱ) adsorption of polyphenol functionalized poly(pyrrole methane)s: the role of acid doped ions[J]. Sep Purif Technol, 2024, 330: 125481. |
| [38] | GUO X, LIU A, LU J, et al. Adsorption mechanism of hexavalent chromium on biochar: kinetic, thermodynamic, and characterization studies[J]. ACS Omega, 2020, 5(42): 27323-27331. |
| [39] | SONG X, TIAN D, QIU Y, et al. Improving poisoning resistance of electrocatalysts via alloying strategy for high-performance lithium-sulfur batteries[J]. Energy Storage Mater, 2021, 41: 248-254. |
| [40] | ZHAO C X, LIU J N, LI B Q, et al. Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc-air batteries[J]. Adv Funct Mater, 2020, 30(36): 2003619. |
| [41] | KANDAMBETH S, JIA J, WU H, et al. Covalent organic frameworks as negative electrodes for high-performance asymmetric supercapacitors[J]. Adv Energy Mater, 2020, 10(38): 2001673. |
| [42] | GIANNOZZI P, ANDREUSSI O, BRUMME T, et al. Advanced capabilities for materials modelling with quantum ESPRESSO[J]. J Phys: Condens Matter, 2017, 29(46): 465901. |
| [43] | HUANG Y, LI X, CHEN L, et al. Synthesis of a magnetic crown ether ion imprinted polymer material for the selective adsorption of lithium[J]. New J Chem, 2023, 47(6): 3134-3139. |
| [44] | ABBAS K, ZNAD H, AWUAL M R. A ligand anchored conjugate adsorbent for effective mercury(Ⅱ) detection and removal from aqueous media[J]. Chem Eng J, 2018, 334: 432-443. |
| [45] | WANG B, WU K, LIU T, et al. Synthesis of hyperbranched polyamine dendrimer/chitosan/silica composite for efficient adsorption of Hg(Ⅱ)[J]. Int J Biol Macromol, 2023, 230: 123135. |
| [46] | JI C, REN Y, YU H, et al. Highly efficient and selective Hg(Ⅱ) removal from water by thiol-functionalized MOF-808: kinetic and mechanism study[J]. Chem Eng J, 2022, 430: 132960. |
| [47] | SHENASHEN M A, EL-SAFTY S A, ELSHEHY E A. Architecture of optical sensor for recognition of multiple toxic metal ions from water[J]. J Hazard Mater, 2013, 260: 833-843. |
| [48] | YOKOI T, KUBOTA Y, TATSUMI T. Amino-functionalized mesoporous silica as base catalyst and adsorbent[J]. Appl Catal A, 2012, 421/422: 14-37. |
| [49] | 史豪, 王雅, 赵尉伶, 等. 表面活性剂改性的磁性纳米颗粒对重金属吸附特征[J]. 材料导报, 2025, 39(6): 58-65. |
| SHI H, WANG Y, ZHAO W L, et al. Adsorption characteristics of heavy metals by magnetic nanoparticles modified with surfactants[J]. Mater Rep, 2025, 39(6): 58-65. | |
| [50] | 李录. 多孔氧化镁/氢氧化镁的可控制备及重金属吸附性能研究[D]. 福州: 福建师范大学, 2021. |
| LI L. Controllable preparation of porous magnesium oxide/magnesium hydroxide and heavy metal adsorption properties[D]. Fuzhou: Fujian Normal University, 2021. | |
| [51] | YOON S Y, JANG S B, WONG K T, et al. Sulfur-anchored palm shell waste-based activated carbon for ultrahigh sorption of Hg(Ⅱ) for in-situ groundwater treatment[J]. J Hazard Mater, 2021, 417: 125995. |
| [52] | ZHANG B, ZHENG H, YANG K, et al. Bottom-up synthesis of a sulfhydryl-modified heteroporous covalent organic framework for ultrafast removal of trace Hg(Ⅱ) from water[J]. Chemosphere, 2024, 360: 142410. |
| [53] | WANG Y, NAKANO T, CHEN X, et al. Studies on adsorption properties of magnetic composite prepared by one-pot method for Cd(Ⅱ), Pb(Ⅱ), Hg(Ⅱ), and As(Ⅲ): mechanism and practical application in food[J]. J Hazard Mater, 2024, 466: 133437. |
| [54] | 李佶衡, 彭良琼, 郭丽君, 等. 固液吸附等温线模型与热力学参数计算[J]. 皮革科学与工程, 2023, 33(6): 36-43. |
| LI Z H, PENG L Q, GUO L J, et al. Solid-liquid adsorption isotherm model and thermodynamic parameter calculation[J]. Leather Sci Eng, 2023, 33(6): 36-43. | |
| [55] | YUAN F, YAN D, ZHANG J, et al. DMF promoted embedded of melamine inside HKUST-1 for efficient Hg(Ⅱ) adsorption with regenerability[J]. Sep Purif Technol, 2024, 335: 126211. |
| [56] | MAHAPATRA U, MANNA A K, CHATTERJEE A. A critical evaluation of conventional kinetic and isotherm modeling for adsorptive removal of hexavalent chromium and methylene blue by natural rubber sludge-derived activated carbon and commercial activated carbon[J]. Bioresour Technol, 2022, 343: 126135. |
| [57] | SILVA M N D, SANTANA I L D, GUEDES G A J C, et al. Conversion of agro-industrial wastes as highly efficient adsorbents in the removal of pollutants: characterization and study of dye adsorption in water[J]. Chem Eng Sci, 2025, 309: 121442. |
| [58] | BAHIRAEI A, BEHIN J. Sonochemical immobilization of MnO2 nanoparticles on NaP-zeolite for enhanced Hg(Ⅱ) adsorption from water[J]. J Environ Chem Eng, 2020, 8(3): 103790. |
| [59] | 赵传起, 巩思诺, 陈宇轩, 等. Zn-Fe共活化磁性生物炭吸附四环素与重金属铬的性能比较与机理分析[J]. 农业环境科学学报, 2025, 44(8): 2201-2210. |
| ZHAO C Q, GONG S N, CHEN Y X, et al. Comparison and mechanism analysis of the adsorption of tetracycline and heavy metal chromium by Zn-Fe co-activated magnetic biochar[J]. J Agro Environ Sci, 2025, 44(8): 2201-2210. | |
| [60] | 殷虹蝶, 江寒梅, 于超俊, 等. 原位硒化衍生新型Cu2O-Cu2Se纳米复合物用于高速吸附重金属离子Cr(Ⅵ)[J]. 环境化学, 2025, 44(2): 638-645. |
| YIN J D, JIANG H M, YU C J, et al. In situ selenization-derived novel Cu2O-Cu2Se nanocomposites for high-speed adsorption of heavy metal ions Cr(Ⅵ)[J]. Environ Chem, 2025, 44(2): 638-645. | |
| [61] | CHEN J, ZENG W, HUANG H, et al. Tunable porosity and Hg(Ⅱ) adsorption performance in dual heteroatom functionalized conjugated micro-mesoporous poly(aniline)s[J]. Sep Purif Technol, 2025, 363: 131997. |
| [62] | WANG J, LIU T, WANG B, et al. Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(Ⅱ) and Ag(Ⅰ)[J]. Chin Chem Lett, 2024, 35(12): 109900. |
| [63] | XU Y N, ZHANG Y, LIU Y, et al. Bioinspired zinc-mediated umpolung thiolation of alkyl electrophiles: reaction development, scope and mechanism[J]. Sci China Chem, 2024, 67(3): 898-907. |
| [64] | MEI L, SUN M Z, YANG R J, et al. Metallic 1T/1T′ phase TMD nanosheets with enhanced chemisorption sites for ultrahigh-efficiency lead removal[J]. Nat Commun, 2024,15(1): 7770. |
| [65] | LI Y, WANG X, XU S, et al. Green synthesis of in-situ S-doped graphyne for Hg(Ⅱ) adsorption and energy storage from efficient mechanochemical reaction of calcium carbide and tetrabromothiophene[J]. Sep Purif Technol, 2025, 353: 128596. |
| [1] | 李成, 李艳玲, 李松松, 罗小龙, 邓必成, 廖伍平. 基于(2-乙基己基胺基)甲基膦酸单-2-乙基己基酯的离子印迹材料及其在微量钪去除方面的应用[J]. 应用化学, 2025, 42(9): 1245-1256. |
| [2] | 张越, 梁蕊, 赵灿男, 李春梅. 氧化石墨烯-DNA纳米探针用于三磷酸腺苷的检测与药物递送[J]. 应用化学, 2024, 41(1): 118-127. |
| [3] | 武彦彬, 李利珍, 李俊华, 许志锋. 基于MoS2纳米花的表面离子印迹材料的制备及性能[J]. 应用化学, 2023, 40(7): 1024-1033. |
| [4] | 潘阳, 鲁惠玲, 李浩, 潘建明. 贵金属离子印迹聚合物的制备及其应用的研究进展[J]. 应用化学, 2023, 40(10): 1359-1375. |
| [5] | 徐峰, 张坤, 阴凤琴, 徐斐, 庞雨萱, 陈诗婷. 阴离子印迹聚合物的制备及其应用研究进展[J]. 应用化学, 2021, 38(2): 123-135. |
| [6] | 黎先财, 田明磊, 程玉雯, 汪秀. 基于MCM-41分子筛表面的镱离子印迹聚合物的制备及其性能[J]. 应用化学, 2019, 36(2): 203-211. |
| [7] | 李娜, 常泽, 卜显和. 基于四唑功能位点的Tb3+配位聚合物的构筑及其金属离子荧光检测性能[J]. 应用化学, 2017, 34(9): 1046-1051. |
| [8] | 关晓琳, 贾天明, 秦雨欣, 张东海, 张扬, 范红婷, 魏强兵, 来守军. 低温水相合成巯基化聚乙烯醇/CdS量子点纳米复合物及用于测定环境水样中痕量Cu2+[J]. 应用化学, 2017, 34(3): 291-299. |
| [9] | 徐锐, 杨青, 李延斌, 高保娇. 反相悬浮聚合法制备硫氰酸根阴离子印迹微球及其离子识别性质[J]. 应用化学, 2015, 32(8): 931-939. |
| [10] | 黄水波,张朝晖,周必武,赵承峰. 磁性碳纳米管表面新型镉离子印迹聚合物制备及其对大米中的镉离子富集[J]. 应用化学, 2015, 32(11): 1299-1306. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||