1 |
CHENG B J, LI X Q, LI H B, et al. Morphology-controllable synthesis of bimetallic oxide Bi2Fe4O9 as novel electrode materials for high-performance supercapacitors[J]. J Energy Storage, 2024, 79: 110137.
|
2 |
BHAGWAN J, JEONG I H. Formation of MWCNT/LiCo2O4 nanoplates and their application for hybrid supercapacitor[J]. Ceram Int, 2024, 50: 10676-10687.
|
3 |
RODRÍGUEZ REGO J M, MACÍAS GARCÍA A, MENDOZA CEREZO L, et al. Design, machining and characterization of the components required for the manufacture of a supercapacitor[J]. J Energy Storage, 2023, 73: 109110.
|
4 |
AZIZI E, ARJOMANDI J, SHI H, et al. Flexible polypyrrole/TiO2/MXene nanocomposite supercapacitor: a promising energy storage device[J]. J Energy Storage, 2024, 75: 109665.
|
5 |
SAMANTARAY S, MOHANTY D, HUNG I M, et al. Unleashing recent electrolyte materials for next-generation supercapacitor applications: a comprehensive review[J]. J Energy Storage, 2023, 72: 108352.
|
6 |
ZHONG W, SU W T, LI P H, et al. Preparation and research progress of lignin-based supercapacitor electrode materials[J]. Int J Biol Macromol, 2023, 259: 128942.
|
7 |
刘娟娟, 轩晓蝶, 杜子富, 等. 聚(3,4-乙烯二氧噻吩)/MXene复合材料的制备及电容性能研究[J]. 功能材料, 2024, 55(3): 3213-3321.
|
|
LIU J J, XUAN X D, DU Z F, et al. Synthesis of poly(3,4-ethylenedioxythiophene)/MXene composite material and its capacitance properties research[J]. J Funct Mater, 2024, 55(3): 3213-3221.
|
8 |
谭良骁, 谭必恩. 超交联微孔聚合物研究进展[J]. 化学学报, 2015, 73(6): 530-540.
|
|
TAN L X, TAN B E. Research progress in hypercrosslinked microporous organic polymers[J]. Acta Chim Sin, 2015, 73(6): 530-540.
|
9 |
LEE J S M, BRIGGS M E, HU C C. Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers[J]. Nano Energy, 2018, 46: 277289.
|
10 |
RAJANGAM V, RAJENDRAN S B, CHANDU V V M G, et al. Influence of annealing temperature in nitrogen doped porous carbon balls derived from hypercross-linked polymer of anthracene for supercapacitor applications[J]. J Energy Storage, 2020, 28: 101196.
|
11 |
PARK O K, KIM N H, LEE J H. Single-step fabrication of surface morphology tuned iron oxide anchored highly porous carbon nanotube hybrid foam for a highly stable supercapacitor electrode[J]. J Colloid Interface Sci, 2023, 641: 479-491.
|
12 |
LU Y, LIANG J N, DENG S F, et al. Hypercrosslinked polymers enabled micropore-dominant N, S Co-doped porous carbon for ultrafast electron/ion transport supercapacitors[J]. Nano Energy, 2019, 65: 103993.
|
13 |
HALDER S, GARG S, CHAKRABORTY C. Introducing non-conjugated ionic spacer in metallo-supramolecular polymer: generation of nanofibers for high-performance electrochromic supercapacitor[J]. Chem Eng J, 2023, 470: 144361.
|
14 |
TAN L X, LI B Y, YANG X J, et al. Knitting hypercrosslinked conjugated microporous polymers with external crosslinker[J]. Polymer, 2015, 70: 336-342.
|
15 |
THIRUNAVUKKARASU K, RAJKUMAR P, SELVARAJ S, et al. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and molecular docking analyses of anticancer molecule 4-hydroxy-3-methoxycinnamaldehyde[J]. J Molr Struct, 2018, 1173: 307-320.
|
16 |
XU M M, WANG J M, ZHANG L H, et al. Construction of hydrophilic hypercrosslinked polymer based on natural kaempferol for highly effective extraction of 5-nitroimidazoles in environmental water, honey and fish samples[J]. J Hazard Mater, 2022, 429: 128288.
|
17 |
ZHENG Y W, WANG J D, LI D H, et al. Insight into the KOH/KMnO4 activation mechanism of oxygen-enriched hierarchical porous biochar derived from biomass waste by in-situ pyrolysis for methylene blue enhanced adsorption[J]. J Anal Appl Pyrolysis, 2021, 158: 105296.
|
18 |
XU X, DENG Z J, ZHANG H F, et al. Polyaniline/polydopamine-regulated nitrogen-doped graphene aerogel with well-developed mesoporous structure for supercapacitor electrode[J]. Chem Eng J, 2023, 477: 147211.
|
19 |
SINGH G, MARIA R A, GENG X, et al. Recognizing the potential of K-salts, apart from KOH, for generating porous carbons using chemical activation[J]. Chem Eng J, 2023, 451: 147662.
|
20 |
YANG B, ZHANG D Y, LI Y X, et al. Locally graphitized biomass-derived porous carbon nanosheets with encapsulated Fe3O4 nanoparticles for supercapacitor applications[J]. Chem Eng J, 2024, 479: 147662.
|
21 |
LI H T, YANG H X, SUN H J, et al. A manganese oxide/biomass porous carbon composite for high-performance supercapacitor electrodes[J]. Electrochim Acta, 2024, 473: 143514.
|
22 |
ZHAI Z Z, WANG S S, XU Y L, et al. Starch-based carbon aerogels prepared by an innovative KOH activation method for supercapacitors[J]. Int J Biol Macromol, 2024, 257: 128587.
|
23 |
LIU Y, XU J, LIU S C. Porous carbon nanosheets derived from Al-based MOFs for supercapacitors[J].Microporous Mesoporous Mater, 2016, 236: 94-99.
|
24 |
JIANG X W, LIU Y F, LIU J, et al. Hypercrosslinked conjugated microporous polymers for carbon capture and energy storage[J]. New J Chem, 2017, 41: 3915-3919.
|
25 |
BAKHOUM D T, SYLLA N F, SARR S, et al. Nitrogen-phosphorous co-doped porous carbon from cross-linked polymers for supercapacitor applications[J]. J Energy Storage, 2023, 68: 107695.
|
26 |
SANG HYO K, RAJANGAM V, CHANDU V V M G, et al. Novel porous carbon material derived from hypercross-linked polymer of p-xylene for supercapacitors electrode[J]. Mater Lett, 2020, 263: 127222.
|
27 |
LI B, DAI F, XIAO Q F, et al. Activated carbon from biomass transfer for high‐energy density lithium ion supercapacitors[J]. Adv Energy Mater, 2016, 6(18): 1600802.
|