应用化学 ›› 2024, Vol. 41 ›› Issue (12): 1732-1741.DOI: 10.19894/j.issn.1000-0518.240194
收稿日期:
2024-04-26
接受日期:
2024-11-18
出版日期:
2024-12-01
发布日期:
2025-01-02
通讯作者:
王俊文
基金资助:
Nan ZHANG, Hai-Feng LEI, Li-Jun BAI, Xiang-Yang GUO, Ming-Yi WANG, Jun-Wen WANG()
Received:
2024-04-26
Accepted:
2024-11-18
Published:
2024-12-01
Online:
2025-01-02
Contact:
Jun-Wen WANG
About author:
wangjunwen@tyut.edu.cnSupported by:
摘要:
煤焦油以及重油中多环芳烃的存在会降低油品的质量,污染环境。 为了降低化石资源中的有害物质含量,减少对环境的污染,同时制备高效的轻质燃油,使用蒽作为多环芳烃模型化合物进行催化加氢饱和。 采用浸渍法制备了一系列不同La质量分数的Pd/γ-Al 2 O3催化剂,并通过X射线衍射(XRD)、X射线光电子能谱(XPS)和氨气程序升温脱附(NH3-TPD)等表征手段考察了La的引入对催化剂的结构、性质以及蒽加氢制备全氢蒽反应性能的影响。 结果表明,适量La的添加显著提高了全氢蒽的选择性,当La金属的负载量(质量分数)为1%时,温度为275 ℃时,氢气压力为4 MPa时,蒽加氢的转化率最高,为99.9%。 催化剂的XRD表征结果显示,适当的金属La掺杂到Pd基催化剂中减少了催化剂的金属颗粒尺寸,提高了Pd的分散度。 XPS表征结果表明,引入1%La后,Pd0活性金属含量最高,其加氢效果最好。 NH3-TPD结果表明,弱酸性较高有利于蒽加氢反应的深度加氢。 对设计高效的贵金属催化剂催化蒽合成全氢蒽提供了一定的理论指导。
中图分类号:
张楠, 雷海凤, 白丽军, 郭向阳, 王明义, 王俊文. La-Pd/ γ-Al2O3对蒽加氢饱和性能的影响[J]. 应用化学, 2024, 41(12): 1732-1741.
Nan ZHANG, Hai-Feng LEI, Li-Jun BAI, Xiang-Yang GUO, Ming-Yi WANG, Jun-Wen WANG. Influence of La-Pd/ γ -Al2O3 on the Performance for Hydrogenation Saturation of Anthracene[J]. Chinese Journal of Applied Chemistry, 2024, 41(12): 1732-1741.
Sample | SBET/(m2·g-1) | Vmicro/(cm3·g-1) | Vtotal/(cm3·g-1) | Pore size/nm |
---|---|---|---|---|
0.5LaPd | 234.6 | 0.005 7 | 0.62 | 10.5 |
1LaPd | 233.2 | 0.007 0 | 0.60 | 10.2 |
3LaPd | 231.7 | 0.007 2 | 0.59 | 10.2 |
5LaPd | 226.7 | 0.009 5 | 0.58 | 10.2 |
7LaPd | 225.1 | 0.009 7 | 0.57 | 10.1 |
表1 不同La负载量的催化剂的质地特性
Table 1 Texture characteristics of catalysts with different La loading
Sample | SBET/(m2·g-1) | Vmicro/(cm3·g-1) | Vtotal/(cm3·g-1) | Pore size/nm |
---|---|---|---|---|
0.5LaPd | 234.6 | 0.005 7 | 0.62 | 10.5 |
1LaPd | 233.2 | 0.007 0 | 0.60 | 10.2 |
3LaPd | 231.7 | 0.007 2 | 0.59 | 10.2 |
5LaPd | 226.7 | 0.009 5 | 0.58 | 10.2 |
7LaPd | 225.1 | 0.009 7 | 0.57 | 10.1 |
Catalysts | Pd3d5/2/eV | Pd3d3/2/eV | La3d5/2/eV | La3d3/2/eV | Pd0/Pd2+ |
---|---|---|---|---|---|
0.5LaPd | 335.4 | 340.8 | 835.5 | 852.1 | 1.0 |
1LaPd | 335.6 | 340.9 | 835.6 | 852.2 | 2.0 |
3LaPd | 335.9 | 341.2 | 835.7 | 852.3 | 1.9 |
5LaPd | 335.4 | 340.6 | 835.4 | 852.1 | 1.8 |
7LaPd | 335.6 | 340.9 | 835.4 | 852.0 | 1.0 |
表2 不同金属La和Pd的表面价态和比例
Table 2 Surface valence states and ratios of different metals La and Pd
Catalysts | Pd3d5/2/eV | Pd3d3/2/eV | La3d5/2/eV | La3d3/2/eV | Pd0/Pd2+ |
---|---|---|---|---|---|
0.5LaPd | 335.4 | 340.8 | 835.5 | 852.1 | 1.0 |
1LaPd | 335.6 | 340.9 | 835.6 | 852.2 | 2.0 |
3LaPd | 335.9 | 341.2 | 835.7 | 852.3 | 1.9 |
5LaPd | 335.4 | 340.6 | 835.4 | 852.1 | 1.8 |
7LaPd | 335.6 | 340.9 | 835.4 | 852.0 | 1.0 |
1 | 李大东. 21世纪的炼油技术与催化[J]. 石油学报(石油加工), 2005(3): 17-24. |
LI D D. Petroleum refining technologies and catalusis in the 21st century[J]. Acta Petrolei Sin (Pet Process Sect), 2005(3):17-24. | |
2 | RUBIO-CLEMENTE A, TORRES-PALM R A, PEÑUELA G A. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review[J]. Sci Total Environ, 2014, 478: 201-225. |
3 | KIM Y S, CHO K S, LEE Y K. Morphology effect of β-zeolite supports for Ni2P catalysts on the hydrocracking of polycyclic aromatic hydrocarbons to benzene, toluene, and xylene[J]. J Catal, 2017, 351: 67-78. |
4 | 刘道诚, 王九占, 荆洁颖, 等. 稠环芳烃加氢饱和催化剂研究进展[J]. 化工进展, 2021, 40(2): 835-844. |
LIU D C, WANG J Z, JING J Y, et al. Research progress on the catalysts for saturated hydrogenation of polycyclic aromatichydrocarbons[J]. Chem Ind Eng Prog, 2021, 40(2): 835-844. | |
5 | 胡意文, 达志坚, 王子军. 几种芳烃加氢反应的热力学分析[J]. 石油学报(石油加工), 2015, 31(1): 7-17. |
HU Y W, DA Z J, WANG Z J. Thermodynamic analysis on the hydrogenation reaction of aromatic hydrocarbons[J]. Acta Petrolei Sin ( Pet Process Sect)), 2015, 31(1: 7-17. | |
6 | LEVITA G,CAVALEIRO A, MOLINARI E, et al. Sliding properties of MoS2 layers: load and interlayer orientation effects[J]. J Phys Chem C, 2014, 118(25): 13809-13816. |
7 | RAO B G, MATTE H S S R, CHATURBEDY P, et al. Hydrodesulfurization of thiophene over few-layer MoS2 covered with cobalt and nickel nanoparticles[J]. ChemPlusChem, 2013, 78(5): 419-422. |
8 | TYE C T, SMITH K J. Hydrodesulfurization of dibenzothiophene over exfoliated MoS2 catalyst[J]. Catal Today, 2006, 116(4): 461-468. |
9 | 肖雨亭, 吴鹏, 王玲, 等. Ce改性Fe-Mn/TiO2低温SCR脱硝催化剂硫中毒机理[J]. 化工环保, 2019, 39(4): 431-436. |
XIAO Y T,WU P, WANG L, et al. Mechanism of sulfur poisoning on low-temperature SCR denitration catalyst Ce-modified Fe-Mn/TiO2[J]. Environ Prot Chem Ind, 2019, 39(4): 431-436. | |
10 | ZHANG T,QU R Y,SU W K,et al. A novel Ce-Ta mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B, 2015, 176/177: 338-346. |
11 | 李伟, 张明慧, 陈志飞, 等. NiMoNx/γ-Al2O3催化剂用于油品重芳烃饱和加氢[J]. 石油化工, 2002, 31(7): 505-509. |
LI W, ZHANG M H, CHEN Z F, et al. Hydrogenation of heavy aromatics in oil over NiMoNx/γ-Al2O3 catalysts[J]. Petrochem Technol, 2002, 31(7): 505-509. | |
12 | 李明翔, 潘柳依, 姚瑞清, 等. NH3对DCC原料油中多环芳烃选择性加氢饱和的影响[J]. 应用化工, 2023, 52(2): 404-408. |
LI M X, PAN L Y, YAO R Q, et al. Effect of NH3 on selecrive hydrogenation saturation of polycyclic aromatic hydrocarbons in DCC feedstock[J]. Appl Chem Ind, 2023, 52(2): 404-408. | |
13 | 贺新福, 高凡, 吴红菊, 等. 富油煤焦油中多环芳烃加氢饱和反应研究进展[J]. 煤田地质与勘探, 2024, 52(7): 156-165. |
HE X F, GAO F, WU H J, et al. Advances in research on hydrogenation saturation of polycyclic aromatic hydrocarbons in coal tar[J]. Coal Geo Explor, 2024, 52(7): 156-165. | |
14 | 张媛媛, 陈静雯, 卢丹, 等. 硝基芳烃选择性加氢催化剂的研究进展[J]. 高校化学工程学报, 2022, 36(4): 459-472. |
ZHANG Y Y, CHEN J W, LU D, et al. Progress on catalysts for selective hydrogenation of nitroarenes[J]. J Chem Eng Chin Univ, 2022, 36(4): 459-472. | |
15 | 刘道诚, 荆洁颖, 王九占, 等. Pt掺杂Ni/NiAlOx催化菲加氢饱和反应性能研究[J]. 燃料化学学报, 2022, 50(1): 90-97. |
LIU D C, JING J Y, WANG J Z, et al. Performance of Pt-doped Ni/NiAlOx catalysts for phenanthrene hydrogenation saturation[J]. J Fuel Chem Technol, 2022, 50(1): 90-97. | |
16 | BAI L J, WANG M Y, LIU N D, et al. Influence of bicomponent Pd based catalysts on anthracene hydrogenation reaction[J]. Res Chem Intermediat, 2024, 50(4): 1809-1825. |
17 | COBO M, QUINTERO A, CORREA C M. Liquid phase dioxin hydrodechlorination over Pd/γ-Al2O3[J]. Catal Today, 2008, 133: 509-519. |
18 | FENG K K, LI C W, GUO Y L, et al. An efficient Cu-K-La/γ-Al2O3 catalyst for catalytic oxidation of hydrogen chloride to chlorine[J]. Appl Catal B-Environ, 2015, 164: 483-487. |
19 | ZHANG Y L, PENG F, ZHOU Y B. Structure, characterization, and dynamic performance of a wet air oxidation catalyst Cu-Fe-La/γ-Al2O3[J]. Chin J Chem Eng, 2016, 24(9): 1171-1177. |
20 | SUN M, DU X B,WANG H B, et al. Reductive amination of triacetoneamine with n-butylamine over Cu-Cr-La/γ-Al2O3[J]. Catal Lett, 2011, 141(11): 1703-1708. |
21 | BETHKE G K, KUNG H H. Selective CO oxidation in a hydrogen-rich stream over Au/γ-Al2O3 catalysts[J]. Appl Catal A: General, 2000, 194/195: 43-53. |
22 | BOURAADA M, LAFJAH M, OUALI M S, et al. Basic dye removal from aqueous solutions by dodecylsulfate- and dodecyl benzene sulfonate-intercalated hydrotalcite[J]. J Hazard Mater, 2008, 153(3): 911-918. |
23 | SUN J, YANG G H, YONEYAMA Y, et al. Catalysis chemistry of dimethyl ether synthesis[J]. ACS Catal,2014, 4(10): 3346-3356. |
24 | LIN H P, WONG S T, MOU C Y. Extensive void defects in mesoporous aluminosilicate MCM-41[J]. J Phy Chem B, 2000, 104(38): 8967-8975. |
25 | NAWROCKI J, KASPRZYK-HORDERN B. The efficiency and mechanisms of catalytic ozonation[J]. Appl Catal B-Environ, 2010, 99(1/2): 27-42. |
26 | GUIDO K, D FRANK O, HENDRIK B, et al. In situ spectroscopic study of the oxidation and reduction of Pd(111)[J]. J Am Chem Soc, 2005, 127(51): 18269-18273. |
27 | SON-KI I, DU J Y, DAE-CHUL K, et al. Low-temperature deactivation and oxidation state of Pd/γ-Al2O3 catalysts for total oxidation of n-hexane[J]. Catal Today, 2004, 93/94/95: 149-154. |
28 | ZHANG J, GAO K, WANG S, et al. Performance of bimetallic PdRu catalysts supported on gamma alumina for 2-ethylanthraquinone hydrogenation[J]. RSC Adv, 2017, 7(11): 6447-6456. |
29 | KHAN N A, JHUNG S H. Adsorptive removal and separation of chemicals with metal-organic frameworks: contribution of π-complexation[J]. J Hazard Mater, 2017, 325: 198-213. |
30 | 武东. 金属助剂对钯基催化剂乙炔氢氯化催化性能的影响[D]. 乌鲁木齐: 新疆大学, 2017. |
WU D. Effects of metal additives on catalystic performance of Pd-based catalysts for acetylene hydrochlorination[D]. Urumqi: Xinjiang University, 2017. | |
31 | 王东哲, 冯旭, 张健, 等. 助剂M(M=Cr、Zn、Y、La)对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J]. 燃料化学学报, 2019, 47(10): 1251-1257. |
WANG D Z, FENG X, ZHANG J, et al. Effect of promoter M(M=Cr, Zn, Y, La) on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol[J]. J Fuel Chem Technol,2019, 47(10): 1251-1257. | |
32 | SUN J, REN C, ZHAO M, et al. Catalytic performance of Cu/Hβ catalysts for selective catalytic reduction of NO with NH3[J]. J Fuel Chem Technol, 2023, 51(6): 823-831. |
33 | WEN J, YOU K, ZHAO F, et al. AlCl3 immobilized on silicic acid as efficient Lewis acid catalyst for highly se lective preparation of dicyclohexylamine from the vapor phase hydroamination of cyclohexene with cyclohexyl amine[J]. Catal Comm, 2020, 145: 106112. |
34 | WU P, SONG L, WANG Y, et al. High-performance benzyl alcohol oxidation catalyst: Au-Pd alloy with ZrO2 as promoter[J]. Appl Sur Sci, 2021, 537: 148059. |
35 | KALENCHUK A N, KOKLIN A E, BOGDAN V I, et al. Hydrogenation of anthracene and dehydrogenation of perhydroanthracene on Pt/C catalysts[J]. Russ J Phys Chem A, 2018, 92(4): 663-668. |
36 | 王学明, 李晓红, 李文英. 载体酸性对Pt/USY菲加氢制烷基金刚烷的影响[J]. 化工学报, 2021, 72(10): 5196-5205. |
WANG X M, LI X H, LI W Y. Effect of support acidity on hydrogenation of phenanthrene to alkyl adamantane over Pt/USY catalysts[J]. J Chem Ind Eng, 2021, 72(10): 5196-5205. |
[1] | 于思为, 王良鹏, 金日哲, 康传清. 氧杂蒽类荧光探针对ClO-的识别和细胞成像应用[J]. 应用化学, 2022, 39(12): 1903-1911. |
[2] | 董智云, 张晓宇, 曾政权, 席福贵. 基于蒽-苯并咪唑鎓的荧光传感器对H2PO4-的高选择性识别[J]. 应用化学, 2020, 37(1): 80-87. |
[3] | 欧亚平,张静,朱小明. 异构的蒽乙烯单钌配合物:合成与表征、电化学、光谱性质及理论计算[J]. 应用化学, 2017, 34(5): 572-581. |
[4] | 张天一, 年文霞, 金瑛. 有机催化蒽酮与β-硝基烯烃的不对称Michael加成反应[J]. 应用化学, 2015, 32(4): 422-427. |
[5] | 肖立伟, 高红杰, 任丽磊, 康健. 改性活性炭负载氯化铁催化氧杂蒽衍生物的合成[J]. 应用化学, 2015, 32(3): 304-309. |
[6] | 金光日, 朱吉凯, 钟克利, 陈铁, 金龙一. 9,10-双-(对-(甲氧基二缩三乙二醇基)苯基乙炔基)蒽的合成、自组装及其光谱分析[J]. 应用化学, 2015, 32(2): 177-182. |
[7] | 任保轶, 赵阳, 李响, 冉凡鹏, 金晓丹. ZrO2负载12-磷钨酸催化螺[芴-9,9′-氧杂蒽]氧化溴化反应[J]. 应用化学, 2013, 30(11): 1299-1303. |
[8] | 耿韶光, 江晓莹, 崔凤灵, 时蕾. 一种缩氨基硫脲类衍生物探针测定生物样品中的蛋白质含量[J]. 应用化学, 2013, 30(05): 555-559. |
[9] | 强新新, 赵志超, 宋锋玲, 彭孝军, 樊江莉. 超细荧光聚合物纳米微球的制备[J]. 应用化学, 2012, 29(06): 633-638. |
[10] | 李尚德, 魏美燕, 李志华, 佘志刚, 林永成. 一株红树内生真菌Penicillium sp.(ZZF29#)次级代谢产物分离与鉴定[J]. 应用化学, 2012, 29(06): 727-729. |
[11] | 王旭, 郑立庆, 李全民. 微晶蒽分离富集测定痕量铜(II)[J]. 应用化学, 2011, 28(10): 1208-1212. |
[12] | 赵岩, 刘金平, 张连学, 蔡恩博, 郜玉钢, 李平亚. 莽吉柿中几种双苯吡酮和蒽醌类成分的分离与鉴定[J]. 应用化学, 2011, 28(02): 229-233. |
[13] | 黄忠京, 杨瑞云, 郭志勇, 佘志刚, 林永成. 培养南海红树林内源真菌Fusarium sp.ZZF60产新型蒽醌衍生物[J]. 应用化学, 2010, 27(04): 394-397. |
[14] | 谭倪, 邵长伦, 陶李明, 何丽仙, 佘志刚, 林永成. 南海红树林内源真菌#2240的3个蒽醌类次级代谢产物的鉴别和药理活性[J]. 应用化学, 2009, 26(3): 277-281. |
[15] | 张黎明, 李霞, 曹井国. 大黄游离羟基蒽醌的TG-DTA分析[J]. 应用化学, 2006, 23(9): 1058-1060. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||