应用化学 ›› 2023, Vol. 40 ›› Issue (7): 923-937.DOI: 10.19894/j.issn.1000-0518.220352
• 综合评述 • 下一篇
收稿日期:
2022-10-27
接受日期:
2023-04-08
出版日期:
2023-07-01
发布日期:
2023-07-19
通讯作者:
张海宝
基金资助:
Xiao-Fang XU, Qiang CHEN, Hai-Bao ZHANG()
Received:
2022-10-27
Accepted:
2023-04-08
Published:
2023-07-01
Online:
2023-07-19
Contact:
Hai-Bao ZHANG
About author:
hbzhang@bigc.edu.cnSupported by:
摘要:
传统工业固氮采用哈伯-博施(Haber-Bosch)工艺,但是需要高温高压,能耗高,污染严重。滑动弧等离子体(Gliding arc plasma, GAP)兼具热等离子体和冷等离子体的优点,能够高效地产生活性物种,显著提高能量效率,使其在固氮领域具有很大的潜在应用价值,近年来受到人们的广泛关注。然而,目前GAP固氮相关研究还比较零散,有必要对具体内容进行总结归纳。本文主要综述了近10年来国内外GAP固氮研究进展,主要包括GAP放电机制、反应器设计、工艺参数研究以及固氮反应机理研究。GAP放电存在击穿伴随滑动放电的B-G模式和持续稳定放电A-G模式,A-G模式放电有助于提高固氮效率。随着滑动弧放电技术的不断发展,GAP反应器中电极结构从传统的2D刀片结构演变到了多种3D柱形结构。通过工艺优化,GAP有助于N2分子的振动激发,从而促进N2分子的分裂转化。最后,对GAP固氮研究进行了展望。
中图分类号:
徐晓芳, 陈强, 张海宝. 滑动弧等离子体固氮研究进展[J]. 应用化学, 2023, 40(7): 923-937.
Xiao-Fang XU, Qiang CHEN, Hai-Bao ZHANG. Recent Progress in Nitrogen Fixation via Gliding Arc Plasma[J]. Chinese Journal of Applied Chemistry, 2023, 40(7): 923-937.
图1 典型GAP放电示意图: (A)二维刀型电极放电; (B)三维旋转电极放电[42]
Fig.1 Schematic diagram of typical gliding arc discharge: (A) 2D knife electrode discharge; (B) 3D rotating electrode discharge[42]
图3 两种不同滑动弧放电模式的电信号及电弧运动图像: (A、B)一个完整滑动周期的电信号曲线; (C、D)滑动弧放电图像(左)及完整周期的滑动弧运动过程图像(右); (E、F)滑动弧运动图像和电信号同步特征; (G)滑动弧放电的工作机制示意图(A、C、E为B-G模式,B、D、F为A-G模式)[42]
Fig.3 Electric signal and arc image of rotating gliding arc discharge in 2 different modes: (A, B) The electrical signal curve of a gliding period; (C, D) Gliding arc discharge image (left) and a cycle of gliding arc motion process image (right); (E, F) Synchronization of gliding arc moving image and electric signal; (G) Schematic diagram of control mechanism of gliding arc discharge characteristics (A, C, E for B-G mode, B, D, F for A-G mode)[42]
图5 滑动弧等离子体反应器结构演变示意图: (A)刀片式GAP反应器[52], (B)磁驱动式GAP反应器[39], (C)旋风GAP反应器[43], (D)反向涡流GAP反应器[20], (E)正反向GAP反应器[56]
Fig.5 Evolution of the gliding arc reactor: (A) Blade gliding arc plasma reactor[52], (B) Magnetically driven gliding arc plasma reactor[39], (C) Cyclonic gliding arc plasma reactor[43], (D) Reverse eddy current gliding arc plasma reactor[20], (E) Forward and reverse gliding arc plasma reactors[56]
图6 滑动弧等离子体反应器电极配置类型示意图: (A)环型[57], (B)螺旋型[59- 60], (C)锥型[62], (D)棒型[63], (E)拉瓦尔喷嘴[64], (F)反应器壁型[65]
Fig.6 Schematic diagram of the electrode configuration type of the arc-slip plasma reactor: (A) Ring type [57], (B) Spiral type[59-60], (C) Cone type[62], (D) Rod type[63], (E) Laval nozzle [64], (F) Reactor wall type[65]
No. | Electrode configuration | Configuration details | Power supply | Feed gas | Flow rate (LPM) | Ref. |
---|---|---|---|---|---|---|
1 | Ring-Type | Ring-Disc | DC | Air | 30~75 | [ |
2 | Spiral-Type | Spiral-Disc | DC | Air | 30~75 | [ [ [ |
Spiral-Disc | DC | Air | <12 | |||
Spiral-Ring | DC | Air | 11 | |||
Helical-Vortex chamber | 60 Hz | Air, Biogas | 12,36 | |||
Disc-rod+spiral SMAE | 5 kHz | Air | Re<2609 | |||
3 | Taper-Type | Solid cone-Cylinder | 10 kHz | CH4, Air | 10~20 | [ |
4 | Rod-Type | Rod-Reactor wall | 50 Hz | Air | 2 | [ |
Rod-Reactor wall | 50 Hz | Humid air | 2 | |||
5 | Laval Nozzle Type | Laval nozzle Rod | 50 Hz | N2, O2, Air | 16~66 | [ |
6 | Reactor Wall Type | Reactor wall feed outlet | DC | Argon, CO2 | 10~22 | [ |
表1 现有GAP电极配置类型及操作细节
Table 1 Existing types of electrode configurations and operational details of GAP
No. | Electrode configuration | Configuration details | Power supply | Feed gas | Flow rate (LPM) | Ref. |
---|---|---|---|---|---|---|
1 | Ring-Type | Ring-Disc | DC | Air | 30~75 | [ |
2 | Spiral-Type | Spiral-Disc | DC | Air | 30~75 | [ [ [ |
Spiral-Disc | DC | Air | <12 | |||
Spiral-Ring | DC | Air | 11 | |||
Helical-Vortex chamber | 60 Hz | Air, Biogas | 12,36 | |||
Disc-rod+spiral SMAE | 5 kHz | Air | Re<2609 | |||
3 | Taper-Type | Solid cone-Cylinder | 10 kHz | CH4, Air | 10~20 | [ |
4 | Rod-Type | Rod-Reactor wall | 50 Hz | Air | 2 | [ |
Rod-Reactor wall | 50 Hz | Humid air | 2 | |||
5 | Laval Nozzle Type | Laval nozzle Rod | 50 Hz | N2, O2, Air | 16~66 | [ |
6 | Reactor Wall Type | Reactor wall feed outlet | DC | Argon, CO2 | 10~22 | [ |
No. | Reactor | Flow rate/(L·min-1) | SEI/(kJ·L-1) | NO x con./% | Energy cons./(GJ·tN-1) | Selectivity/% | Ref. |
---|---|---|---|---|---|---|---|
1 | 2D Blade type | 2 | 1.40 | 0.90 | 286 | – | [ |
2 | Tubular type | 10 | 2.74 | 1.50 | 257 | 93 | [ |
3 | 2D Blade type | 1 | 0.58 | 0.95 | 103 | – | [ |
4 | Screening type | 1 | – | 0.10 | 1 714 | 75 | [ |
5 | Rotating type | 20 | 2.72 | 1.80 | 497 | 60 | [ |
20 | 0.60 | 0.79 | 131 | 89 | |||
170 | 0.64 | 0.74 | 148 | 90 | |||
170 | 0.08 | 0.28 | 48 | 95 | |||
6 | Screw-type | 3 | 2.66 | 0.40 | 253 | – | [ |
表2 GAP工艺参数对NO x 合成浓度、能耗和选择性的影响
Table 2 Effect of operating conditions on synthesis concentration, energy consumption, and selectivity of NO x
No. | Reactor | Flow rate/(L·min-1) | SEI/(kJ·L-1) | NO x con./% | Energy cons./(GJ·tN-1) | Selectivity/% | Ref. |
---|---|---|---|---|---|---|---|
1 | 2D Blade type | 2 | 1.40 | 0.90 | 286 | – | [ |
2 | Tubular type | 10 | 2.74 | 1.50 | 257 | 93 | [ |
3 | 2D Blade type | 1 | 0.58 | 0.95 | 103 | – | [ |
4 | Screening type | 1 | – | 0.10 | 1 714 | 75 | [ |
5 | Rotating type | 20 | 2.72 | 1.80 | 497 | 60 | [ |
20 | 0.60 | 0.79 | 131 | 89 | |||
170 | 0.64 | 0.74 | 148 | 90 | |||
170 | 0.08 | 0.28 | 48 | 95 | |||
6 | Screw-type | 3 | 2.66 | 0.40 | 253 | – | [ |
1 | FOWLER D, COYLE M, SKIBA U, et al. The global nitrogen cycle in the twenty-first century[J]. Phil Trans R Soc B, 2013, 368(1621): 20130164. |
2 | HANK C, STERNBERG A, KÖPPEL N, et al. Energy efficiency and economic assessment of imported energy carriers based on renewable electricity[J]. Sustain Energy Fuels, 2020, 4(5): 2256-2273. |
3 | GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. |
4 | KAUR B, KAUR G, ASTHIR B. Biochemical aspects of nitrogen use efficiency: an overview[J]. J Plant Nutr, 2017, 40(4): 506-523. |
5 | WANG W, PATIL B, HEIJKERS S, et al. Nitrogen fixation by gliding arc plasma: better insight by chemical kinetics modelling[J]. ChemSusChem, 2017, 10(10): 2145-2157. |
6 | CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of Earth's nitrogen cycle[J]. Science, 2010, 330(6001): 192-196. |
7 | LI S, MEDRANO JIMENEZ J, HESSEL V, et al. Recent progress of plasma-assisted nitrogen fixation research: a review[J]. Processes, 2018, 6(12): 248. |
8 | BALTRUSAITIS J. Sustainable ammonia production[J]. ACS Sustainable Chem Eng, 2017, 5(11): 9527. |
9 | TANABE Y, NISHIBAYASHI Y. Developing more sustainable processes for ammonia synthesis[J]. Coordin Chem Rev, 2013, 257(17/18): 2551-2564. |
10 | YAPICIOGLU A, DINCER I. A review on clean ammonia as a potential fuel for power generators[J]. Renew Sust Energy Rev, 2019, 103: 96-108. |
11 | CHERKASOV N, IBHADON A O, FITZPATRICK P. A review of the existing and alternative methods for greener nitrogen fixation[J]. Chem Eng Process, 2015, 90: 24-33. |
12 | GAMBAROTTA S, SCOTT J. Multimetallic cooperative activation of N2[J]. Angew Chem, 2004, 43(40): 5298-5308. |
13 | BOGAERTS A, NEYTS E C. Plasma technology: an emerging technology for energy storage[J]. ACS Energy Lett, 2018, 3(4): 1013-1027. |
14 | YIN K S, VENUGOPALAN M. Plasma chemical synthesis. I. effect of electrode material on the synthesis of ammonia[J]. Plasma Chem Plasma P, 1983, 3: 343-350. |
15 | SUGIYAMA K, AKAZAWA K, OSHIMA M, et al. Ammonia synthesis by means of plasma over MgO catalyst[J]. Plasma Chem Plasma P, 1986, 6(2): 179-193. |
16 | UYAMA H, MATSUMOTO O. Synthesis of ammonia in high-frequency discharges[J]. Plasma Chem Plasma P, 1989, 9(1): 13-24. |
17 | 刘洋, 张海宝, 陈强. 低温等离子体合成氨研究进展[J]. 应用化学, 2021, 38(6): 622-636. |
LIU Y, ZHANG H B, CHEN Q. Advances in ammonia synthesis by cryogenic plasma[J]. Chin J Appl Chem, 2021, 38(6): 622-636. | |
18 | PATIL B S, WANG Q, HESSEL V, et al. Plasma N2-fixation: 1900-2014[J]. Catal Today, 2015, 256: 66. |
19 | RUSANOV V D, FRIDMAN A A, SHOLIN G V. The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules[J]. Soviet Phys Uspekhi, 1981, 24(6): 447. |
20 | NUNNALLY T, GUTSOL K, RABINOVICH A, et al. Dissociation of CO2 in a low current gliding arc plasmatron[J]. J Phys D Appl Phys, 2011, 44(27): 274009-47016. |
21 | 何立明, 陈一, 刘兴建, 等. 大气压交流滑动弧的放电特性[J]. 高电压技术, 2016, 42(6): 1921-1928 |
HE L M, CHEN Y, LIU X J, et al. Discharge characteristics of atmospheric pressure AC slip arc[J]. High Volt Eng, 2016,42(6): 1921-1928. | |
22 | 牛宗涛, 章程, 马云飞, 等. 气流对微秒脉冲滑动放电特性的影响[J]. 物理学报, 2015, 64(19): 233-240. |
NIU Z T, ZHANG C, MA Y F, et al. Effect of the air flow on the sliding discharge characteristics of the microsecond pulse[J]. Acta Phys Sin, 2015,64 (19): 233-240. | |
23 | 张若兵, 罗刚, 黄昊晨, 等. 电极结构对滑动弧放电等离子体尺寸的影响规律[J]. 高电压技术, 2019, 45(10): 3357-3364. |
ZHANG R B, LUO G, HUANG H C, et al. Effect of electrode structure on sliding arc discharge plasma size[J]. High Volt Eng, 2019,45(10): 3357-3364. | |
24 | LIU Y, WANG C W, XU X F, et al. Synergistic effect of Co-Ni bimetal on plasma catalytic ammonia synthesis[J]. Plasma Chem Plasma P, 2022, 42(2): 267-282. |
25 | KIM H H, TERAMO TO Y, OGATA A, et al. Atmospheric‐pressure nonthermal plasma synthesis of ammonia over ruthenium catalysts[J]. Plasma Process Polym, 2017, 14(6): 1600157. |
26 | KIM H H, TERAMOTO Y, OGATA A, et al. Plasma catalysis for environmental treatment and energy applications[J]. Plasma Chem Plasma P, 2016, 36(1): 45-72. |
27 | INDARTO A, YANG D R, CHOI J W, et al. Gliding arc plasma processing of CO2 conversion[J]. J Hazard Mater, 2007, 146(1/2): 309-315. |
28 | PETITPAS G, ROLLIER J D, DARMON A, et al. A comparative study of non-thermal plasma assisted reforming technologies[J]. Int J Hydrogen Energy, 2007, 32(14): 2848-2867. |
29 | 王赛, 鲁娜, 商克峰, 等. 大气压交流旋转滑动弧放电及其应用于促进甲烷干重整[J]. 高电压技术, 2019, 45(5): 1451-1460. |
WANG S, LU N, SHANG K F, et al. Atmospheric AC rotational sliding arc discharge and its application to promote methane dry reforming[J]. High Volt Eng, 2019,45(5): 1451-1460. | |
30 | ZHU J, GAO J, EHN A, et al. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure[J]. Phys Plasmas, 2017, 24(1): 013514. |
31 | 鲁娜, 孙丹凤, 王冰, 等. 交流旋转滑动弧的放电特性[J]. 高电压技术, 2018, 44(6): 1930-1937. |
LU N, SUN D F, WANG B, et al. Discharge characteristics of AC rotating sliding arcs[J]. High Volt Eng, 2018, 44(6): 1930-1937. | |
32 | NAVILLE A, GUYE P, GUYE C. Appareil autorégulateur pour soumettre les gaz et les vapeurs à l'action de l'arc électrique: French, 350120[P]. 1904. |
33 | WU A, YANG J, XU B, et al. Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis[J]. Appl Catal B, 2021, 299: 120667. |
34 | VERVLOESSEM E, AGHAEI M, JARDALI F, et al. Plasma-based N2 fixation into NOx: insights from modeling toward optimum yields and energy costs in a gliding arc plasmatron[J]. ACS Sustainable Chem Eng, 2020, 8(26): 9711-9720. |
35 | LESUEUR H, CZERNICHOWSKI A, CHAPELLE J. Device for generating low-temperature plasmas by formation of sliding electric discharges: French, 2639172[P]. 1988 . |
36 | CZERNICHOWSKI A. Gliding arc: applications to engineering and environment control[J]. Pure Appl Chem, 1994, 66(6): 1301-1310. |
37 | ZHANG H, LI X D, ZHANG Y Q, et al. Rotating gliding arc codriven by magnetic field and tangential flow[J]. IEEE T Plasma Sci, 2012, 40(12): 3493-3498. |
38 | BABA T, TAKEUCHI Y, STRYCZEWSKA H D, et al. Study of 6 electrodes gliding arc discharge configuration[J]. Prz Elektrotechniczn, 2012, 88(6): 86-88. |
39 | GANGOLI S P, GUTSOL A F, FRIDMAN A A. A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. design and diagnostics[J]. Plasma Sources Sci T, 2010, 19(6): 065004. |
40 | FRIDMAN A, NESTER S, KENNEDY L A, et al. Gliding arc gas discharge[J]. Prog Energ Combust, 1999, 25(2): 211-231. |
41 | MEROUANI D R, ABDELMALEK F, TALEB F, et al. Plasma treatment by gliding arc discharge of dyes/dye mixtures in the presence of inorganic salts[J]. Arab J Chem, 2015, 8(2): 155-163. |
42 | 雷健平, 何立明, 陈一, 等. 旋转滑动弧放电等离子体滑动放电模式的实验研究[J]. 物理学报, 2020, 69(19): 232-243. |
LEI J P, HE L M, CHEN Y, et al. Experimental study of the sliding discharge mode of the rotating sliding arc discharge plasma[J]. Acta Phys Sin, 2020, 69(19): 232-243. | |
43 | 李锴. 滑动弧等离子体催化甲烷氧化干重整反应研究[D]. 大连: 大连理工大学, 2018. |
LI K. Research on methane oxidation dry reforming reaction catalyzed by sliding arc plasma[D]. Dalian: Dalian University of Technology, 2018. | |
44 | 杜长明, 乔良, 王静, 等. 新型滑动弧放电等离子体的特性[J]. 高电压技术,2010, 36(4): 1016-1020. |
DU C M, QIAO L, WANG J, et al. Characteristics of the new sliding arc discharge plasma[J]. High Volt Eng, 2010, 36(4): 1016-1020. | |
45 | 张磊, 于锦禄, 赵兵兵, 等. 高气压下交流旋转滑动弧放电特性实验研究[J]. 物理学报, 2022, 71(7): 274-286. |
ZHANG L, YU J L, ZHAO B B, et al. Experimental study of alternating current rotational sliding arc discharge characteristics at high pressure[J]. Acta Phys Sin, 2022, 71(7): 274-286. | |
46 | JARDALI F, VAN ALPHEN S, CREEL J, et al. NOx production in a rotating gliding arc plasma: potential avenue for sustainable nitrogen fixation[J]. Green Chem, 2021, 23(4): 1748-1757. |
47 | ZHANG H, ZHU F, TU X, et al. Characteristics of atmospheric pressure rotating gliding arc plasmas[J]. Plasma Sci Technol, 2016, 18(5): 473-477. |
48 | 陈航, 吴昂键, 郑佳庚, 等. 旋转滑动弧等离子体固氮的物理特性[J]. 浙江大学学报, 2021, 55(8): 1558-1565. |
CHEN H, WU A J, ZHENG J G, et al. Physical properties of the plasma of a rotating sliding arc for nitrogen fixation[J]. J Zhejiang Univ, 2021, 55(8): 1558-1565. | |
49 | DIATCZYK J. Modeling discharge length for GA plasma reactor[J]. Prz Elektrotechniczn, 2012, 6(88): 89-91. |
50 | PETITPAS G, GONZALEZ-AGUILAR J, DARMON A, et al. Ethanol and E85 reforming assisted by a non-thermal arc discharge[J]. Energy Fuel, 2010, 24(4): 2607-2613. |
51 | 连昊宇. 滑动弧等离子体催化甲醇重整高效制氢的研究[D]. 大连: 大连理工大学, 2019. |
LIAN H Y. Research on efficient hydrogen production by sliding arc plasma[D]. Dalian: Dalian University of Technology, 2019. | |
52 | KALRA C S, GUTSOL A F, FRIDMAN A A. Gliding arc discharges as a source of intermediate plasma for methane partial oxidation[J]. IEEE T Plasma Sci, 2005, 33(1): 32-41. |
53 | GANGOLI S, GUTSOL A, FRIDMAN A. Rotating non-equilibrium gliding arc plasma disc for enhancement in ignition and combustion of hydrocarbon fuels[C]. Proc 17th Int Symp Plasma Chem, Toronto, Canada, 2005: 1042. |
54 | DALAINE V, CORMIER J M, LEFAUCHEUX P. A gliding discharge applied to H2S destruction[J]. J Appl Phys, 1998, 83(5): 2435-2441. |
55 | RAMAKERS M, TRENCHEV G, HEIJKERS S, et al. Gliding arc plasmatron: providing an alternative method for carbon dioxide conversion[J]. ChemSusChem, 2017, 10(12): 2642-2652. |
56 | KALRA C S, KOSSITSYN M, ISKENDEROVA K, et al. Electrical discharges in the reverse vortex flow-tornado discharges[C]. Proc 16th Int Symp Plasma Chem, Taormina, Italy, 2003: 1-6. |
57 | KALRA C S, CHO Y I, GUTSOL A, et al. Gliding arc in tornado using a reverse vortex flow[J]. Rev Sci Instrum, 2005, 76(2): 025110. |
58 | YU L, YAN J H, TU X, et al. Three working patterns of gliding arc in tornado[J]. IEEE T Plasma Sci, 2011, 39(11): 2832-2833. |
59 | REN Y, LI X, LU S, et al. Generation process and electric arc motion characteristics of DC vortex gliding arc plasma[J]. IEEE T Plasma Sci, 2014, 42(10): 2702-2703. |
60 | BUBLIEVSKY A F, SAGAS J C, GORBUNOV A V, et al. Similarity relations of power-voltage characteristics for tornado gliding arc in plasma-assisted combustion processes[J]. IEEE T Plasma Sci, 2015, 43(5): 1742-1746. |
61 | GUOFENG X, XINWEI D. Electrical characterization of a reverse vortex gliding arc reactor in atmosphere[J]. IEEE T Plasma Sci, 2012, 40(12): 3458-3464. |
62 | LEE D H, KIM K T, CHA M S, et al. Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane[J]. P Combust Inst, 2007, 31(2): 3343-3351. |
63 | ZHAO T L, LIU J L, LI X S, et al. Dynamic evolution of 50-Hz rotating gliding arc discharge in a vortex air flow[J]. IEEE T Plasma Sci, 2014, 42(10): 2704-2705. |
64 | LU S Y, SUN X M, LI X D, et al. Physical characteristics of gliding arc discharge plasma generated in a laval nozzle[J]. Phys Plasmas, 2012, 19(7): 072122. |
65 | RAMAKERS M, MEDRANO J A, TRENCHEV G, et al. Revealing the arc dynamics in a gliding arc plasmatron: a better insight to improve CO2 conversion[J]. Plasma Sources Sci T, 2017, 26(12): 125002. |
66 | PATIL B S, ROVIRA P J, HESSEL V, et al. Plasma nitrogen oxides synthesis in a milli-scale gliding arc reactor: investigating the electrical and process parameters[J]. Plasma Chem Plasma P, 2016, 36(1): 241-257. |
67 | PATIL B S, PEETERS F J J, VAN ROOIJ G J, et al. Plasma assisted nitrogen oxide production from air: using pulsed powered gliding arc reactor for a containerized plant[J]. AIChE J, 2018, 64(2): 526-537. |
68 | PEI X, GIDON D, GRAVES D B. Propeller arc: design and basic characteristics[J]. Plasma Sources Sci T, 2018, 27(12): 125007. |
69 | LIE L, BIN W, CHI Y, et al. Characteristics of gliding arc discharge plasma[J]. Plasma Sci Technol, 2006, 8(6): 653. |
70 | MALIK M A, JIANG C, HELLER R, et al. Ozone-free nitric oxide production using an atmospheric pressure surface discharge-a way to minimize nitrogen dioxide co-production[J]. Chem Eng J, 2016, 283: 631-638. |
71 | DIATCZYK J, KOMARZYNIEC G, STRYCZEWSKA H D. Power consumption of gliding arc discharge plasma reactor[J]. Plasma Environ Sci Technol, 2011, 5(1): 12-16. |
72 | INDUMATHY B, ANANTHANARASIMHAN J, RAO L, et al. Catalyst-free production of ammonia by means of interaction between a gliding arc plasma and water surface[J]. J Phys D Appl Phys, 2022, 55(39): 395501. |
73 | MALIK M A, SCHOENBACH K H. Sliding discharges in steam: effects of dielectric surface and hydrocarbon additives on hydrogen, oxygen and hydrogen peroxide generation[J]. J Phys D Appl Phys, 2013, 46(14): 145201. |
74 | MUZAMMIL I, LEE D H, DINH D K, et al. A novel energy efficient path for nitrogen fixation using a non-thermal arc[J]. RSC Adv, 2021, 11(21): 12729-12738. |
75 | PEI X, GIDON D, GRAVES D B. Specific energy cost for nitrogen fixation as NOx using DC glow discharge in air[J]. J Phys D Appl Phys, 2019, 53(4): 044002. |
76 | ROUWENHORST K H R, ENGELMANN Y, VAN′T VEER K, et al. Plasma-driven catalysis: green ammonia synthesis with intermittent electricity[J]. Green Chem, 2020, 22(19): 6258-6287. |
77 | MUZAMMIL I, KIM Y N, KANG H, et al. Plasma catalyst-integrated system for ammonia production from H2O and N2 at atmospheric pressure[J]. ACS Energy Lett, 2021, 6(8): 3004-3010. |
78 | 吕兴杰, 陈航, 吴昂键, 等. 基于磁旋滑动弧等离子体催化的空气直接氧化固氮[J]. 浙江大学学报(工学版), 2022, 56(6): 1206-1211. |
LV X J, CHEN H, WU A J, et al. Direct air oxidation of nitrogen fixation based on magnetic spin sliding arc plasma catalysis[J]. J Zhejiang Univ(Eng Sci), 2022, 56(6): 1206-1211. | |
79 | SHAH J, WU T, LUCERO J, et al. Nonthermal plasma synthesis of ammonia over Ni-MOF-74[J]. ACS Sustainable Chem Eng, 2019, 7(1): 377-383. |
80 | INGELS R, GRAVES D B. Air plasma for nitrogen fixation: an old idea with new promise[C]. Proc 22nd Int Symp Plasma Chem, Antwerp, Belgium, 2015: 5-10. |
[1] | 张毅城, 查飞, 唐小华, 常玥, 田海锋, 郭效军. 非均相催化制备有机过氧化物的研究进展[J]. 应用化学, 2023, 40(6): 769-788. |
[2] | 王博, 罗方, 孙彦招, 胡静雯, 刘俊妙. COMSOL软件在枸杞多糖超滤膜生物反应器中膜阻塞模型构建中的应用[J]. 应用化学, 2022, 39(12): 1912-1919. |
[3] | 周玉凤, 周川巍, 胡桐泽, 段展鹏, 王颢潼, 石淑云. Fe/V-Sb2O3复合材料的构筑及光催化降解医药废水[J]. 应用化学, 2022, 39(10): 1572-1578. |
[4] | 刘洋, 张海宝, 陈强. 低温等离子体合成氨研究进展[J]. 应用化学, 2021, 38(6): 622-636. |
[5] | 吴胜莉,李宗军,高翔. 富勒烯硫化反应进展[J]. 应用化学, 2019, 36(4): 392-401. |
[6] | 赫法贵,高翔. 氢氧根和烷氧基负离子含氧亲核试剂在富勒烯衍生化中的应用[J]. 应用化学, 2017, 34(5): 489-501. |
[7] | 李飞, 姜恒, 赵杉林, 李萍. 一步法高压合成硫化异丁烯产物分析及反应机理[J]. 应用化学, 2015, 32(7): 771-776. |
[8] | 徐丽婷, 邢娜, 吴琼, 马喜彤, 邢永恒. 铁(Ⅲ)的氮杂环配合物的合成、结构及对环己烷氧化的催化性能[J]. 应用化学, 2014, 31(06): 707-714. |
[9] | 何伟, 方正, 陈克涛, 万志东, 郭凯. 微反应器在合成化学中的应用[J]. 应用化学, 2013, 30(12): 1375-1385. |
[10] | 刘瑜, 张天龙, 王伯周, 葛忠学, 李华. 多元曲线分辨结合在线红外用于3-氨基-4-氨基肟基呋咱的合成反应机理[J]. 应用化学, 2012, 29(09): 1075-1081. |
[11] | 张淑利, 熊贤锋, 王友兵, 王伯周, 葛忠学, 李华. 多元曲线分辨方法和红外光谱用于奥克托今合成机理[J]. 应用化学, 2012, 29(06): 711-717. |
[12] | 绳则翠, 周成, 张龄之, 朱亮亮, 姜波, 陈英文, 祝社民, 沈树宝. 自组装多功能反应器固相合成依非巴特[J]. 应用化学, 2012, 29(03): 275-279. |
[13] | 孟丹, 王和义, 刘秀华, 丁兰岚. Fe掺杂对纳米TiO2薄膜的结构与光催化性能的影响[J]. 应用化学, 2011, 28(12): 1379-1386. |
[14] | 董岩, 刘祖亮, 袁成梁. 5-氨基-6-硝基-[1,2,5]噁二唑并[3,4-b]吡啶-1-氧化物的合成新方法[J]. 应用化学, 2011, 28(05): 521-525. |
[15] | 李高亮, 何辉. N,N-二甲基羟胺与HNO2的反应动力学[J]. 应用化学, 2010, 27(08): 916-923. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||