应用化学 ›› 2023, Vol. 40 ›› Issue (3): 341-359.DOI: 10.19894/j.issn.1000-0518.220227
收稿日期:
2022-06-30
接受日期:
2022-11-09
出版日期:
2023-03-01
发布日期:
2023-03-27
通讯作者:
于英豪
基金资助:
Qi-Hang CHEN, Fei-Jian XU, Feng WANG, Shuang-Chan FU, Ying-Hao YU()
Received:
2022-06-30
Accepted:
2022-11-09
Published:
2023-03-01
Online:
2023-03-27
Contact:
Ying-Hao YU
About author:
ceyhyu@scut.edu.cnSupported by:
摘要:
随着科技的发展进步,环境友好型的绿色化学逐渐成为时代主流,低毒无毒、可回收循环和可生物降解的材料已成为现在研究的中心。离子液体是一类全部由离子组成的液体,无味、不可燃、蒸汽压极低以及可操作温度范围宽,具有良好的热稳定性和化学稳定性,易与其它物质分离,可循环利用,是一类绿色溶剂。低共熔溶剂是一大类与离子液体有许多相似物性的低共熔混合物,在室温下多呈液态。相对于离子液体,低共熔溶剂所需成本更低,制备方式简单,具有更好的耐湿性,这使得其在工业上更具前景。作为一个新兴的研究领域,低共熔溶剂已受到化学领域相关人员的广泛关注与研究,但用于能源和环境应用功能材料的低共熔溶剂的研究尚处于探索的早期阶段。低共熔溶剂除了被广泛用作合成材料时使用的惰性介质和反应试剂外,还可直接作为功能材料,如在电化学方面作为储能装置的电解质以及吸附萃取过程中的吸附剂等。因此对低共熔溶剂的基本原理以及其在材料化学领域,尤其是功能材料方面的应用进行了相关介绍,并对低共熔溶剂在抗静电领域可能的应用做出了分析与展望。
中图分类号:
陈启航, 许飞健, 王锋, 傅双婵, 于英豪. 低共熔溶剂及其在抗静电领域中应用的研究进展[J]. 应用化学, 2023, 40(3): 341-359.
Qi-Hang CHEN, Fei-Jian XU, Feng WANG, Shuang-Chan FU, Ying-Hao YU. Research Progress of Deep Eutectic Solvent and Its Application Prospects as Antistatic Agents[J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 341-359.
Type | Composition | Formula | Example |
---|---|---|---|
Ⅰ | Metal salt+organic salt | Cat+X -zMCl x M=Zn,Sn,Fe,Al,Ga,In | ZnCl2+ChCl |
Ⅱ | Metal salt hydrate+organic salt | Cat+X -zMCl x ·yH2OM=Cr,Co,Cu,Ni,Fe | 6H2O+ChCl |
Ⅲ | Organic salt+HBD | Cat+X -zRZZ=CONH2,COOH,OH | ChCl+Urea |
Ⅳ | Metal salt (hydrate)+HBD | MCl x +RZ=MCl x-1·RZ+MCl x+1M=Al,ZnZ=CONH2,OH | ZnCl2+Urea |
表1 低共熔溶剂的的主要类型[11]
Table 1 The main types of deep eutectic solvents[11]
Type | Composition | Formula | Example |
---|---|---|---|
Ⅰ | Metal salt+organic salt | Cat+X -zMCl x M=Zn,Sn,Fe,Al,Ga,In | ZnCl2+ChCl |
Ⅱ | Metal salt hydrate+organic salt | Cat+X -zMCl x ·yH2OM=Cr,Co,Cu,Ni,Fe | 6H2O+ChCl |
Ⅲ | Organic salt+HBD | Cat+X -zRZZ=CONH2,COOH,OH | ChCl+Urea |
Ⅳ | Metal salt (hydrate)+HBD | MCl x +RZ=MCl x-1·RZ+MCl x+1M=Al,ZnZ=CONH2,OH | ZnCl2+Urea |
图3 在几种疏水DESs中CO2的溶解度等温线与压力的关系。(A) 卤素离子、(B) 温度和 (C) HBD∶HBA比例对CO2溶解度的影响[21]
Fig.3 Solubility isotherms of CO2 in the prepared DESs as a function of pressure.The effects of (A) the halide ion, (B) the temperature and (C) the HBD∶HBA ratio on the CO2 solubility are presented[21]
图4 (A)CO2在L-薄荷醇-百里酚、百里酚-2,6-二甲苯酚、氯化胆碱-尿素和氯化胆碱-乙二醇中的溶解度(303.15 K)对比;(B)二氧化碳在L-薄荷醇-百里酚、百里酚-2,6-二甲苯酚、[BIMI][BF4]和[BMIM][TfO]中的溶解度对比(313.15 K);(C)在L-薄荷醇-百里酚和百里酚-2,6-二甲苯酚中,中压~2.6 MPa条件下CO2溶解度的温度依赖性[23]
Fig.4 Carbon dioxide solubility (A) in L-menthol/thymol, thymol/2,6-xylenol, ChCl/urea, and ChCl/ethylene glycol at 303.15 K (B) and in MTH, T26X, [BIMI][BF4], and [BMIM][TfO] at 313.15 K; (C) Temperature dependence of carbon dioxide solubility at medium pressure ~2.6 MPa in L-menthol/thymol and thymol/2,6-xylenol[23]
图5 在20 ℃ 和105 Pa(a)条件下,4个DESs吸收的SO2与时间的比较;在20 ℃ 和1×105 Pa (b)下,水对EmimCl-Im中SO2吸收能力的影响[24]
Fig.5 Comparison of SO2 absorption by four DESs as a function of time at 20 ℃ and 1×105 Pa (a). Effect of water on SO2 absorption capacity in EmimCl-Im at 20 ℃ and 1×105 Pa (b)[24]
图6 (A) 多种金属氧化物在3种低共熔溶剂中的溶解度与50 ℃平衡2 d后在3.14 mol/L HCl溶液中的溶解度的相关性[28];(B) 50 ℃和标准大气压下不同摩尔比的DESs对甲苯磺酸-ChCl溶解金属氧化物后的金属含量;(C) 金属氧化物在不同DESs:对甲苯磺酸∶ChCl(1∶1)、丙二酸∶ChCl(1∶1)、尿素∶ChCl(2∶1)、乙二醇∶ChCl(2∶1)及盐酸溶液(3.14 mol/L)中的溶解度[30]
Fig.6 (A) Correlation between the solubility of a variety of metal oxides in three deep eutectic solvents and the solubility in 3.14 mol/L HCl(aq) after equilibration for 2 days at 50 ℃[28]; (B) Metal content after solubilization of metal oxides in the deep eutectic solvent ptsa∶ChCl at different HBD∶HBA molar ratios at 50 ℃ and atmospheric pressure; (C) Solubility of metal oxides in different DESs: ptsa∶ChCl(1∶1), malonic acid∶ChCl(1∶1), urea∶ChCl(2∶1), ethylene glycol∶ChCl(2∶1), and HCl (3.14 mol/L) [30]
Solvent | iCALB | CALB | CALA | PCL | No enzyme |
---|---|---|---|---|---|
ChCl∶Acet | 23 a | 96 | 0.5 | 0.0 | 0.0 |
ChCl∶EG | 11(99) b | 32(93) b | 3.0 | 0.2 | 0.0 |
ChCl∶Gly | 96 | 96 | 70 | 22 | 0.0 |
ChCl∶MA | 30 | 58 | 0.7 | 0.0 | 0.7 |
ChCl∶Urea | 93 | 99 | 1.6 | 0.8 | 0.0 |
EAC∶Acet | 63 | 92 | 2.7 | 0.0 | 0.0 |
EAC∶EG | 23(54) b | 33(79) b | 20 | 0.0 | 0.0 |
EAC∶Gly | 93 | 91 | 2.1 | 0.5 | 0.0 |
Toluene | 92 | 92 | 76 | 5.0 | 0.0 |
表2 60 ℃时戊酸乙酯转化为戊酸丁酯的百分比[33]
Table 2 Percentage conversion of ethyl valerate to butyl valerate at 60 ℃[33]
Solvent | iCALB | CALB | CALA | PCL | No enzyme |
---|---|---|---|---|---|
ChCl∶Acet | 23 a | 96 | 0.5 | 0.0 | 0.0 |
ChCl∶EG | 11(99) b | 32(93) b | 3.0 | 0.2 | 0.0 |
ChCl∶Gly | 96 | 96 | 70 | 22 | 0.0 |
ChCl∶MA | 30 | 58 | 0.7 | 0.0 | 0.7 |
ChCl∶Urea | 93 | 99 | 1.6 | 0.8 | 0.0 |
EAC∶Acet | 63 | 92 | 2.7 | 0.0 | 0.0 |
EAC∶EG | 23(54) b | 33(79) b | 20 | 0.0 | 0.0 |
EAC∶Gly | 93 | 91 | 2.1 | 0.5 | 0.0 |
Toluene | 92 | 92 | 76 | 5.0 | 0.0 |
图7 (A) Z-乙烯基硒酸酯的合成;(B) 一锅法合成Z-乙烯基硒酸酯时使用DESs做催化剂和常规反应条件催化的产率对比[35]
Fig.7 (A) Synthesis of Z-vinyl Selenocyanates; (B) Yield comparison of one-pot synthesis of Z-vinylselenocyanate using DESs as catalyst and catalyzed by standard reaction conditions[35]
图9 (A) 质子型离子液体基DESs催化二氧化碳环氧固定的拟定机理[39];(B) 双唑类DESs催化二氧化硫环氧固定的拟定机理[24]
Fig.9 (A) Proposed mechanism of carbon dioxide epoxy fixation catalyzed by protic ionic liquid-based deep eutectic solvents[39]; (B) Proposed mechanism of bisazole-based DESs for oxidative fixation of sulfur dioxide[24]
图10 [PG-CaCl2-0.5]-凝胶应用于室温和寒冷环境下的可拉伸和柔性电致发光器件: (a) 所制备的电致发光器件示意图;(b) 制备的电致发光器件的亮度随温度的变化,表明随着温度的升高亮度变得更亮;(c) 制备的电致发光器件在20 ℃和-20 ℃的暗室中的照片;在(c)条件下的(d)拉伸(e)弯曲实验[42]
Fig.10 [PG-CaCl2-0.5]-gel applied in stretchable and flexible electroluminescent devices at room and cold environment: (a) Diagram of the as-prepared electroluminescent device; (b) Luminance of the prepared electroluminescent device as a function of temperature, showing that luminance becomes brighter as the temperature increases; (c) Photos of the prepared electroluminescent device in darkroom at 20 ℃ and -20 ℃. Images of the prepared electroluminescent device in darkroom at 20 ℃ and -20 ℃ with (d) stretching and (e) bending[42]
图11 (a)(i) 被切成两半的两个独立的SSHTP在24 h后重新愈合连接成一个整体; 该整体可以承受500 g (ii) 负荷或(iii) 拉伸而不会断裂,该负荷大于自身质量的500倍; (b) 在80 ℃不同愈合时间下SSHTP自愈合的光学显微镜图像[53]
Fig.11 (a) Two free-standing SSHTPs are cut into two halves, and they can be rejoined into a new one after healing for 24 h (i). It can bear (ii) or lift (iii) a 500 g load without any fracture, which is larger than 500× its own mass; (b) Optical microscopy images of healed SSHTPs with different healing times at 80 ℃[53]
图12 AA/ChCl含量对打印部件的抗静电效果的影响: (a) ρs和ρv;(b) ρs和温度;(c) ρs和储存时间;(d)乙醇洗涤后的ρs[57]
Fig.12 Antistatic effect of the AA/ChCl content on printed parts: ρs and ρv (a), ρsvs temperature (b), ρsvs storage time (c) and ρs after ethanol washing (d)[57]
1 | GE X, GU C, WANG, X, et al. Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: challenges, opportunities, and future vision[J]. J Mater Chem A, 2017, 5(18): 8209-8229. |
2 | PLECHKOVA N V, SEDDON, K R. Applications of ionic liquids in the chemical industry[J]. Chem Soc Rev, 2008, 37(1): 123-150. |
3 | ZHANG Q, DE OLIVEIRA VIGIER K, ROYER S, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chem Soc Rev, 2012, 41(21): 7108-7146. |
4 | ABBOTT A P, CAPPER, G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chem Commun, 2003(1): 70-71. |
5 | WELTON T. Ionic liquids: a brief history[J]. Biophys Rev, 2018, 10(3): 691-706. |
6 | ABBOTT A P, BOOTHBY D, CAPPER G, et al. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids[J]. J Am Chem Soc, 2004, 126(29): 9142-9147. |
7 | HIMEUR F, STEIN I, WRAGG D S, et al. The ionothermal synthesis of metal organic frameworks, Ln(C9O6H3)((CH3NH)2CO)2, using deep eutectic solvents[J]. Solid State Sci, 2010, 12(4): 418-421. |
8 | ABBOTT A P, CAPPER, G, MCKENZIE K J, et al. Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride[J]. J Electroanal Chem, 2007, 599(2): 288-294. |
9 | JHONG H R, WONG D S H, WAN C C, et al. A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells[J]. Electrochem Commun, 2009, 11(1): 209-211. |
10 | ALVAREZ-VASCO C, MA R S, QUINTERO M, et al. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization[J]. Green Chem, 2016, 18(19): 5133-5141. |
11 | SMITH E L, ABBOTT A P, RYDER K S. Deep eutectic solvents (DESs) and their applications[J]. Chem Rev, 2014, 114(21): 11060-11082. |
12 | DI PIETRO M E, MELE A. Deep eutectics and analogues as electrolytes in batteries[J]. J Mol Liq, 2021: 338. |
13 | TANG X, ZUO M, LI Z, et al. Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents[J]. ChemSusChem, 2017, 10(13): 2696-2706. |
14 | LIU C, LI M C, CHEN W, et al. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement[J]. Carbohydr Polym, 2020, 246: 116548. |
15 | KHANDELWAL S, TAILOR, Y K, KUMAR, M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations[J]. J Mol Liq, 2016, 215: 345-386. |
16 | ZHAO J, ZHANG J, YANG W, et al. “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries[J]. Nano Energy, 2019, 57: 625-634. |
17 | PROTSENKO V S, BOBROVA L S, GOLUBTSOV D E, et al. Electrolytic deposition of hard chromium coatings from electrolyte based on deep eutectic solvent[J]. Russ J Appl Chem, 2018, 91(7): 1106-1111. |
18 | LIAO H G, JIANG Y X, ZHOU Z Y, et al. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis[J]. Angew Chem Int Ed Engl, 2008, 47(47): 9100-9103. |
19 | HARTLEY J M, IP C M, FORREST G C, et al. EXAFS study into the speciation of metal salts dissolved in ionic liquids and deep eutectic solvents[J]. Inorg Chem, 2014, 53(12): 6280-6288. |
20 | KALHOR P, GHANDI, K. Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste[J]. Molecules, 2019, 24(22): 4012. |
21 | ZUBEIR L F, VAN OSCH D, ROCHA M A A, et al. Carbon dioxide solubilities in decanoic acid-based hydrophobic deep eutectic solvents[J]. J Chem Eng Data, 2018, 63(4): 913-919. |
22 | ALIZADEH V, ESSER L, KIRCHNER B. How is CO2 absorbed into a deep eutectic solvent?[J]. J Chem Phys, 2021, 154(9): 094503. |
23 | ALHADID A, SAFAROV J, MOKRUSHINA L, et al. Carbon dioxide solubility in nonionic deep eutectic solvents containing phenolic alcohols[J]. Front Chem, 2022, 10: 864663. |
24 | LONG G, YANG C, YANG X, et al. Bisazole-based deep eutectic solvents for efficient SO2 absorption and conversion without any additives[J]. ACS Sustain Chem Eng, 2020, 8(7): 2608-2613. |
25 | DENG D, ZHANG C, DENG X, et al. Efficient absorption of low partial pressure SO2 by 1-ethyl-3-methylimidazolium chloride plus N-formylmorpholine deep eutectic solvents[J]. Energy Fuels, 2019, 34(1): 665-671. |
26 | XING H, LIAO C, YANG Q, et al. Ambient lithium-SO2 batteries with ionic liquids as electrolytes[J]. Angew Chem Int Ed Engl, 2014, 53(8): 2099-2103. |
27 | YANG D, ZHANG S, JIANG D E. Efficient absorption of SO2 by deep eutectic solvents formed by biobased aprotic organic compound succinonitrile and 1-ethyl-3-methylimidazolium chloride[J]. ACS Sustain Chem Eng, 2019, 7(10): 9086-9091. |
28 | ABBOTT A P, CAPPER G, DAVIES D L, et al. Solubility of metal oxides in deep eutectic solvents based on choline chloride[J]. J Chem Eng Data, 2006, 51(4): 1280-1282. |
29 | CHEN W, JIANG J, LAN X, et al. A strategy for the dissolution and separation of rare earth oxides by novel Bronsted acidic deep eutectic solvents[J]. Green Chem, 2019, 21(17): 4748-4756. |
30 | RODRIGUEZ N R, MACHIELS L, BINNEMANS K. p-Toluenesulfonic acid-based deep-eutectic solvents for solubilizing metal oxides[J]. ACS Sustain Chem Eng, 2019, 7(4): 3940-3948. |
31 | MORRISON H G, SUN C C, NEERVANNAN S. Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles[J]. Int J Pharm, 2009, 378(1/2): 136-139. |
32 | ZHANG H, LANG J, LAN P, et al. Study on the dissolution mechanism of cellulose by ChCl-based deep eutectic solvents[J]. Material, 2020, 13(2): 278. |
33 | GORKE J T, SRIENC F, KAZLAUSKAS R J. Hydrolase-catalyzed biotransformations in deep eutectic solvents[J]. Chem Commun, 2008, (10): 1235-1237. |
34 | SINGH B, LOBO H, SHANKARLING G. Selective N-alkylation of aromatic primary amines catalyzed by bio-catalyst or deep eutectic solvent[J]. Catal Lett, 2011, 141(1): 178-182. |
35 | WU C, XIAO H J, WANG S W, et al. Natural deep eutectic solvent-catalyzed selenocyanation of activated alkynes via an intermolecular h-bonding activation process[J]. ACS Sustain Chem Eng, 2019, 7(2): 2169-2175. |
36 | MIRJALILI B B F, JALILI BAHABADI N, BAMONIRI A. Triethanolamine-sodium acetate as a novel deep eutectic solvent for promotion of tetrahydrodipyrazolopyridines synthesis under microwave irradiation[J]. J Iran Chem Soc, 2021, 18(8): 2181-2187. |
37 | WU M L, BAI Y S, CHEN X J, et al. Deep eutectic solvents used as catalysts for synthesis of 1,10-phenanthroline by improved Skraup reaction[J]. Res Chem Intermed, 2021, 47(9): 3551-3567. |
38 | OBST M, SRIVASTAVA A, BASKARAN S, et al. Preparation of propargyl amines in a ZnCl2-dimethylurea deep-eutectic solvent[J]. Synlett, 2018, 29(2): 185-188. |
39 | YANG X, ZOU Q, ZHAO T, et al. Deep eutectic solvents as efficient catalysts for fixation of CO2 to cyclic carbonates at ambient temperature and pressure through synergetic catalysis[J]. ACS Sustain Chem Eng, 2021, 9(31): 10437-10443. |
40 | ABBOTT A P, EL TTAIB K, FRISCH G, et al. The electrodeposition of silver composites using deep eutectic solvents[J]. Phys Chem Chem Phys, 2012, 14(7): 2443-2449. |
41 | CRUZ H, JORDAO N, BRANCO L C. Deep eutectic solvents (DESs) as low-cost and green electrolytes for electrochromic devices[J]. Green Chem, 2017, 19(7): 1653-1658. |
42 | LIU C, QI J, HE B, et al. Ionic conductive gels based on deep eutectic solvents[J]. Int J Smart Nano Mat, 2021, 12(3): 337-350. |
43 | JAUMAUX P, LIU Q, ZHOU D, et al. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries[J]. Angew Chem Int Ed, 2020, 59(23): 9134-9142. |
44 | BOLDRINI C L, MANFREDI N, PERNA F M, et al. Dye-sensitized solar cells that use an aqueous choline chloride-based deep eutectic solvent as effective electrolyte solution[J]. Energy Technol, 2017, 5(2): 345-353. |
45 | HONG S, YUAN Y, LIU C Z, et al. A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors[J]. J Mater Chem C, 2020, 8(2): 550-560. |
46 | BOISSET A, JACQUEMIN J, ANOUTI M. Physical properties of a new deep eutectic solvent based on lithium bis (trifluoromethyl)sulfonyl imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors[J]. Electrochim Acta, 2013, 102: 120-126. |
47 | QIN H, OWYEUNG R E, SONKUSALE S R, et al. Highly stretchable and nonvolatile gelatin-supported deep eutectic solvent gel electrolyte-based ionic skins for strain and pressure sensing[J]. J Mater Chem C, 2019, 7(3): 601-608. |
48 | HUANG M K, ANURATHA K S, XIAO Y, et al. Co-solvent modified methylsulfonylmethane-based hybrid deep eutectic solvent electrolytes for high-voltage symmetric supercapacitors[J]. Electrochim Acta, 2022: 424. |
49 | GAO Z S, XIE S L, ZHANG B, et al. Ultrathin Mg-Al layered double hydroxide prepared by ionothermal synthesis in a deep eutectic solvent for highly effective boron removal[J]. Chem Eng J, 2017, 319: 108-118. |
50 | FENG Y C, YAN G H, WANG T, et al. Synthesis of MCM-41-supported metal catalysts in deep eutectic solvent for the conversion of carbohydrates into 5-hydroxymethylfurfural[J]. ChemSusChem, 2019, 12(5): 978-982. |
51 | SEYEDI N, KHABAZZADEH H, SAEEDNIA S. ZnCl2/urea as a deep eutectic solvent for the preparation of bis(indolyl)methanes under ultrasonic conditions[J]. Synth React Inorg M, 2015, 45(10): 1501-1505. |
52 | ROKADE S M, BHATE P M. Ferrier reaction in a deep eutectic solvent[J]. Carbohydr Res, 2015, 415: 28-30. |
53 | LI R A, ZHANG K L, CHEN G X, et al. Stiff, self-healable, transparent polymers with synergetic hydrogen bonding interactions[J]. Chem Mater, 2021, 33(13): 5189-5196. |
54 | LU C, WANG C, WANG J, et al. Integration of hydrogen bonding interaction and Schiff-base chemistry toward self-healing, anti-freezing, and conductive elastomer[J]. Chem Eng J, 2021: 425. |
55 | KOSIŃSKI S, RYKOWSKA I, GONSIOR M, et al. Ionic liquids as antistatic additives for polymer composites-a review[J]. Polym Test, 2022, 112: 107649. |
56 | GOUDARZI M, MAHYARI M, FATHOLLAHI M, et al. Deep eutectic solvents as sustainable antistatic coating agent for cyclotetramethylenetetranitramine to reduce charge-accumulations[J]. J Electrostat, 2020: 108: 103519. |
57 | SU J, LI S, CHEN Y, et al. 3D photoprintable antistatic materials with polymerizable deep eutectic solvents[J]. Ind Eng Chem Res, 2021, 60(49): 17797-17803. |
[1] | 李慧慧, 姚开胜, 赵亚南, 范李娜, 田钰琳, 卢伟伟. 离子液体调控合成Pt-Pd双金属纳米材料及其催化氨硼烷水解释氢[J]. 应用化学, 2023, 40(4): 597-609. |
[2] | 吴双, 赵德扬, 吴胜寒, 魏立纲, 刘娜, 安庆大. 1-丁基-3-甲基咪唑甲基磺酸盐水溶液中酚型木质素单体溶解的二维相关红外光谱分析[J]. 应用化学, 2022, 39(10): 1600-1609. |
[3] | 何欧文, 孙长富, 于宏兵. 廉价离子液体体系中玉米芯生成糠醛优化[J]. 应用化学, 2022, 39(02): 272-282. |
[4] | 钮占宁, 唐好庆, 郑超, 田甜, 郑立允. 密度泛函理论研究烷基乙醇仲胺溴离子液体表面改性四氧化三铁[J]. 应用化学, 2021, 38(7): 825-835. |
[5] | 李叶惠, 李晓宁, 惠伟, 王祥, 王海军. 低共熔溶剂/表面活性剂体系分离纯化黄芩苷[J]. 应用化学, 2021, 38(12): 1647-1654. |
[6] | 周超, 生程钜, 闻林林. 咪唑盐类聚离子液体抗菌剂的制备及其在水凝胶敷料中的应用[J]. 应用化学, 2021, 38(1): 51-59. |
[7] | 刘宁, 王丹凤, 伍素云, 刘水林, 付琳, 刘跃进. 短孔道介孔分子筛Zr-Ce-SBA-15固载酸性离子液体催化合成双酚F[J]. 应用化学, 2020, 37(9): 1038-1047. |
[8] | 郭辉, 殷园园, 张学颖, 庄玉伟, 曹健, 张国宝. 酸性离子液体催化合成N-氰乙基-N-羟乙基苯胺[J]. 应用化学, 2020, 37(5): 512-517. |
[9] | 马浩, 赵雪, 李坤兰, 邵国林, 安庆大, 杨丽玉, 魏立纲. 硅烷基咪唑双三氟甲烷磺酰亚胺离子液体气相色谱固定相的性能评价[J]. 应用化学, 2020, 37(4): 447-454. |
[10] | 胡家乐, 薛冬峰. 稀土离子特性与稀土功能材料研究进展[J]. 应用化学, 2020, 37(3): 245-255. |
[11] | 喻昌木, 张荣, 卢小鸾, 杨敏, 彭黔荣. 具有过氧化物酶活性的Imm-Fe3+-IL的制备及用于比色法测定H2O2和葡萄糖[J]. 应用化学, 2020, 37(10): 1211-1220. |
[12] | 高博, 杨宏伟, 田少鹏, 赵玉真, 田甜. 1-烷基-4-氨基-1,2,4-三唑类含能离子液体的溶解性能[J]. 应用化学, 2019, 36(9): 1044-1052. |
[13] | 宋飞跃, 薛泳波, 高欣, 白玲, 李靖, 邓芸, 谢利娟, 阮文权. 不同离子液体双水相萃取钯[J]. 应用化学, 2019, 36(3): 335-340. |
[14] | 郭一江, 陈庆德, 沈兴海. 新型离子液体1-烷基-3-甲基咪唑苯甲酰基三氟硼酸盐的合成与性质[J]. 应用化学, 2019, 36(10): 1186-1193. |
[15] | 朱云, 洪亮, 金葆康. 高温红外光谱电化学薄层池的制作与表征[J]. 应用化学, 2019, 36(1): 107-113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||