
应用化学 ›› 2022, Vol. 39 ›› Issue (8): 1224-1236.DOI: 10.19894/j.issn.1000-0518.210500
陈炳刚1,3, 刘三荣1, 蒋子江2(), 于喜飞1,3(
)
收稿日期:
2021-10-15
接受日期:
2022-01-20
出版日期:
2022-08-01
发布日期:
2022-08-04
通讯作者:
于喜飞
作者简介:
zjjiang@ciac. ac. cn
基金资助:
Bing-Gang CHEN1,3, San-Rong LIU1, Zi-Jiang JIANG2(), Xi-Fei YU1,3(
)
Received:
2021-10-15
Accepted:
2022-01-20
Published:
2022-08-01
Online:
2022-08-04
Contact:
Xi-Fei YU
About author:
xfyu@ciac.ac.cnSupported by:
摘要:
皮肤作为人体最外层的器官,容易遭受损伤,构建能够为皮肤提供保护作用的屏障材料具有非常重要的意义。基于皮肤屏障材料性能要求,将亲水改性的聚硅氧烷(PSI)和聚乙烯醇(PVA)相结合,通过原位Ca2+离子交联构建了一种复合多功能的皮肤屏障材料PSI-PVA。研究表明,该材料具有较好的干态和湿态力学性能,以及较好的皮肤相容性、可清洗性、亲水性、透气性、可修饰性和生物相容性。当PVA质量分数为20%时,溶胀率可达149%;随着PVA用量的增加,材料的清洗容易程度提高;紫外吸收剂羟基苯甲酮修饰后,材料的紫外光(200~400 nm)透过率在20%以下,在材料的保护下,小鼠胚胎成纤维细胞(NIH 3T3)在UVB(311 nm)照射后具有较高的存活率(71%)。因此,PSI-PVA可以满足皮肤屏障材料多项性能需求,在皮肤保护和受损修复等领域具有较好的应用前景。
中图分类号:
陈炳刚, 刘三荣, 蒋子江, 于喜飞. 水性聚硅氧烷和聚乙烯醇复合物制备及其作为皮肤屏障材料的性能[J]. 应用化学, 2022, 39(8): 1224-1236.
Bing-Gang CHEN, San-Rong LIU, Zi-Jiang JIANG, Xi-Fei YU. Preparation and Properties Characterization of Hydrophilic Polysiloxane and Polyvinyl Alcohol Composite as Skin Barrier Material[J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1224-1236.
图1 聚硅氧烷和聚乙烯醇复合物作为皮肤屏障材料的制备过程及其特性
Fig.1 Schematic illustration of preparation and properties of skin barrier materials (SBM) based on polysiloxane and PVA composite
图2 聚硅氧烷PDMS-PVMS, PDMS-PVMS-COOH及PDMS-PVMS-COO-Na+的1H NMR (A)和FT-IR (B)谱图
Fig.2 The 1H NMR (A) and FT-IR (B) spectra of PDMS-PVMS, PDMS-PVMS-COOH and PDMS-PVMS-COO-Na+
图3 力学性能:不同摩尔分数—COO-Na+修饰的PSI-PVA薄膜的拉伸曲线(A)和杨氏模量(B) (PVA质量分数为9.10%, Ca2+浓度为0.5 mol/L); 不同PVA质量分数下PSI-PVA薄膜的拉伸曲线(C)和杨氏模量(D) (—COO-Na+摩尔分数为10%,Ca2+浓度为0.5 mol/L); 不同含水质量分数下PSI-PVA薄膜的拉伸曲线(E)和杨氏模量(F) (—COO-Na+摩尔分数为10%, PVA质量分数为9.10%, Ca2+浓度为0.5 mol/L); (G)不同Ca2+交联浓度下PSI-PVA薄膜的拉伸曲线(—COO-Na+摩尔分数为10%, PVA质量分数为9.10%); (H)含水质量分数为10%质量分数的PSI-PVA薄膜在有无Ca2+交联下的拉伸曲线(—COO-Na+摩尔分数为10%, PVA质量分数为9.10%)
Fig.3 Mechanical properties: tensile curve (A) and Young's Modulus (B) of PSI-PVA film with different modified ratio of —COO-Na+ (PVA mass fraction was 9.10%, concentration of Ca2+ was 0.5 mol/L); tensile curve (C) and Young's Modulus (D) of PSI-PVA film with different mass fraction of PVA (—COO-Na+ mole fraction was 10%, concentration of Ca2+ was 0.5 mol/L); tensile curve (E) and Young′s Modulus (F) of PSI-PVA film with different content of water (—COO-Na+ mole fraction was 10%, PVA mass fraction was 9.10% and concentration of Ca2+ was 0.5 mol/L); (G) Tensile curve of PSI-PVA film with different concentration of Ca2+ (—COO-Na+ mole fraction was 10%, PVA mass fraction was 9.10% ); (H) Tensile curve of PSI-PVA film with or without Ca2+ crosslinking (—COO-Na+ mole fraction was 10%, PVA mass fraction was 9.10% and water content was 10%)
图4 不同PVA质量分数下(A) (Ca2+浓度为0.5 mol/L)和不同Ca2+交联浓度下(B) (PVA质量分数为20%)PSI-PVA薄膜在纯水和人工汗液中的溶胀情况; (C) PVA薄膜(染色后)在纯水中溶胀前后的变化(标尺为1 cm); 不同PVA质量分数下的PSI-PVA薄膜吸收纯水(D)和人工汗液(E)后室温下水含量随时间的变化关系(环境温度18 ℃,相对湿度30%,Ca2+浓度为0.5 mol/L); (F)不同PVA质量分数下PSI-PVA薄膜的水气透过速率(WVTR) (Ca2+浓度为0.5 mol/L)
Fig.4 The swelling ratio of PSI-PVA film in water and artificial sweat with different PVA mass fraction (A) (concentration of Ca2+ was 0.5 mol/L), with different concentration of Ca2+ (B) (PVA mass fraction was 20%); (C) The photograph of PVA film in water (after dyeing, scale bar was 1 cm); The variation of water content with time of PSI-PVA film absorbing water (D) and artificial sweat (E) in room temperature (room temperature was 18 ℃ and relative humidity was 30%, concentration of Ca2+ was 0.5 mol/L); (F) The WVTR of PSI-PVA film with different mass fraction of PVA (concentration of Ca2+ was 0.5 mol/L)
图5 清洗性能: (A) 不同PVA质量分数的PSI-PVA薄膜在Ca2+交联下的的清洗状况; (Ca2+浓度为0.5 mol/L) (B) PVA质量分数为20%的PSI-PVA薄膜未进行离子交联下的清洗状况(标尺为1 cm)
Fig.5 Cleaning properties: the cleaning situation of PSI-PVA film with different mass fraction of PVA after Ca2+ crosslinking (A), with PVA mass fraction of 20% after non-crosslinking (B) (the concentration of Ca2+ was 0.5 mol/L, scale bar was 1 cm)
图6 不同PVA质量分数下PSI-PVA薄膜的SEM形貌 (A) 和水接触角 (B) (Ca2+浓度为0.5 mol/L, 标尺为50 μm)
Fig.6 The SEM morphology (A) and water contact angle (B) of PSI-PVA film with different mass fraction of PVA (the concentration of Ca2+ was 0.5 mol/L, scale bar was 50 μm)
图7 (A) 不同质量分数UV-0修饰的PSI在THF溶液中的紫外吸收性能(0.5 mg/mL); (B) PSI-PVA和PSI(UV)-PVA薄膜的紫外透过性能(薄膜涂覆量为1.2 mg/cm2); 不同涂覆量的PSI-PVA薄膜(C)和PSI(UV)-PVA薄膜(D)的紫外透过性能(PVA质量分数为9.10%, Ca2+浓度为0.5 mol/L)
Fig 7 (A) The UV absorbance of PSI in THF solution (0.5 mg/mL) with different mass fraction of UV-0; (B) The UV transmittance of PSI-PVA and PSI(UV)-PVA film (1.2 mg/cm2); the UV transmittance of PSI-PVA film (C) and PSI(UV)-PVA film (D) with different coating amount (PVA mass fraction was 9.10%, the concentration of Ca2+ was 0.5 mol/L)
图8 紫外屏蔽性能: (A) 紫外屏蔽性能的体外实验示意图; (B) NIH 3T3细胞在不同保护状态下接受紫外辐射后的细胞活死比例; (C) NIH 3T3细胞在不同保护状态下接受紫外照射后的活死染色图(活细胞呈绿色,死细胞呈红色)(PVA质量分数为9.10%, Ca2+浓度为0.5 mol/L,标尺为100 μm)
Fig.8 Anti-UV properties: (A) the schematic illustration of UV-shielding properties in vitro; the live/dead cell ratio (B) and live/dead stain images (C) of NIH 3T3 cell in different protected situations after UV irradiation (PVA mass fraction was 9.10%, the concentration of Ca2+ was 0.5 mol/L, scale bar was 100 μm)
图9 生物相容性: (A) NIH 3T3细胞在不同PSI-PVA和PSI(UV)-PVA溶液浓度下培养24 h的细胞活性; NIH 3T3细胞在不同样品薄膜上培养24 h后的活死染色: (B) 正常培养 (对照组); (C) PSI-PVA薄膜; (D) PSI(UV)-PVA薄膜 (PVA质量分数为9.10%,Ca2+浓度为0.5 mol/L,标尺为50 μm)
Fig 9 Biocompatibility: (A) The cell viability of NIH 3T3 incubated for 24 h with different concentrations of PSI-PVA and PSI(UV)-PVA solutions; The live/dead stain images of NIH 3T3 cell incubated on different sample films for 24 h: (B) Control; (C) PSI-PVA film; (D) PSI(UV)-PVA film (PVA mass fraction was 9.10%, the concentration of Ca2+ was 0.5 mol/L, scale bar was 50 μm)
1 | SHERMAN V R, TANG Y, ZHAO S, et al. Structural characterization and viscoelastic constitutive modeling of skin[J]. Acta Biomater, 2017, 53: 460-469. |
2 | SHERMAN V R, YANG W, MEYERS M A, et al. The materials science of collagen[J]. J Mech Behav Biomed Mater, 2015, 52: 22-50. |
3 | PISSARENKO A, MEYERS M A. The materials science of skin: analysis, characterization, and modeling[J]. Prog Mater Sci, 2020, 110: 100634-100686. |
4 | SUN B K, SIPRASHVILI Z, KHAVARI P A. Advances in skin grafting and treatment of cutaneous wounds[J]. Science,2014, 346: 941-945. |
5 | SATO N, KITAHARA T, FUJIMURA T. Age-related changes of stratum corneum functions of skin on the trunk and the limbs[J]. Skin Pharmacol Physiol, 2014, 27: 181-187. |
6 | SHEIKHOLESLAM M, WRIGHT M E E, JESCHKE M G, et al. Biomaterials for skin substitutes[J]. Adv Healthc Mater, 2018, 7: 1700897-1700917. |
7 | ORYAN A, ALEMZADEH E, MOSHIRI A. Burn wound healing: present concepts, treatment strategies and future directions[J]. J Wound Care, 2017, 26: 5-19. |
8 | GIRARD D, LAVERDET B, BUHE V, et al. Biotechnological management of skin burn injuries: challenges and perspectives in wound healing and sensory recovery[J]. Tissue Eng Part B Rev, 2017, 23: 59-82. |
9 | BAKER L A, MARCHETTI B, KARSILI T N V, et al. Photoprotection: extending lessons learned from studying natural sunscreens to the design of artificial sunscreen constituents[J]. Chem Soc Rev, 2017, 46: 3770-3791. |
10 | D'ORAZIO J, JARRETT S, AMARO-ORTIZ A, et al. UV radiation and the skin[J]. Int J Mol Sci, 2013, 14: 12222-12248. |
11 | LAUTENSCHLAGER S, WULF H C, PITTELKOW M R. Photoprotection[J]. Lancet, 2007, 370: 528-537. |
12 | 王心蕊, 程慧敏, 唐丽萍, 等. 二维层状离子型纳米材料在化妆品领域的应用进展[J]. 应用化学, 2018, 35(10): 1166-1173. |
WANG X R, CHENG H M, TANG L P, et al. Applications of two-dimensional layered nanomaterials in cosmetics[J]. Chinese J Appl Chem, 2018, 35(10): 1166-1173. | |
13 | SERPONE N, DONDI D, ALBINI A. Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products[J]. Inorg Chim Acta, 2007, 360: 794-802. |
14 | XING J, YUAN D, XIE H, et al. Preparation of efficient ultraviolet-protective transparent coating by using a titanium-containing hybrid oligomer[J]. ACS Appl Mater Interfaces, 2021, 13: 5592-5601. |
15 | YOO J, KIM H, CHANG H, et al. Biocompatible organosilica nanoparticles with self-encapsulated phenyl motifs for effective UV protection[J]. ACS Appl Mater Interfaces, 2020, 12: 9062-9069. |
16 | DONG Y, CHEN S, ZHOU S, et al. Perspectives on the next generation of sunscreen: safe, broadband, and long-term photostability[J]. ACS Mater Lett, 2019, 1: 336-343. |
17 | LOSANTOS R, FUNES-ARDOIZ I, AGUILERA J, et al. Rational design and synthesis of efficient sunscreens to boost the solar protection factor[J]. Angew Chem Int Ed, 2017, 56: 2632-2635. |
18 | YAMADA M, MOHAMMED Y, PROW T W. Advances and controversies in studying sunscreen delivery and toxicity[J]. Adv Drug Deliv Rev, 2020, 153: 72-86. |
19 | ADAMSON A S, SHINKAI K. Systemic absorption of sunscreen: balancing benefits with unknown harms[J]. JAMA, 2020, 323: 223-224. |
20 | WU C, HUANG J, CHU B, et al. Dynamic and hierarchically structured networks with tissue-like mechanical behavior[J]. ACS Nano, 2019, 13: 10727-10736. |
21 | YU B, KANG S Y, AKTHAKUL A, et al. An elastic second skin[J]. Nat Mater 2016, 15: 911-918. |
22 | BORDE A, LARSSON M, ODELBERG Y, et al. Increased water transport in PDMS silicone films by addition of excipients[J]. Acta Biomater, 2012, 8: 579-588. |
23 | BEZUIDENHOUT D, WILLIAMS D F, ZILLA P. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices[J]. Biomaterials, 2015, 36: 6-25. |
24 | HAO X, JEFFERY J L, WILKIE J S, et al. Functionalised polysiloxanes as injectable, in situ curable accommodating intraocular lenses[J]. Biomaterials, 2010, 31: 8153-8163. |
25 | KUMAR A, HAN S S. PVA-based hydrogels for tissue engineering: a review[J]. Int J Polym Mater Polym Biomater, 2016, 66: 159-182. |
26 | CAZÓN P, VELÁZQUEZ G, VÁZQUEZ M. Characterization of bacterial cellulose films combined with chitosan and polyvinyl alcohol: evaluation of mechanical and barrier properties[J]. Carbohydr Polym, 2019, 216: 72-85. |
27 | TEIXEIRA M A, AMORIM M T P, FELGUEIRAS H P. Poly(vinyl alcohol)-based nanofibrous electrospun scaffolds for tissue engineering applications[J]. Polymers, 2019, 12: 1-33. |
28 | 刘艳, 俞丹, 李维亚, 等. 壳聚糖-聚乙烯醇共混膜在织物化学镀中的应用[J]. 应用化学, 2015, 32(2): 200-206. |
LIU Y, YU D, LI W Y, et al. Application of chitosan/polyvinyl alcohol complex film in fabrics' electroless plating[J]. Chinese J Appl Chem, 2015, 32(2): 200-206. | |
29 | HUANG Y, GUO M, TAN J, et al. Impact of molecular architecture on surface properties and aqueous stabilities of silicone-based carboxylate surfactants[J]. Langmuir, 2020, 36: 2023-2029. |
30 | WANG R, WANG X, ZHAN Y, et al. A dual network hydrogel sunscreen based on poly-gamma-glutamic acid/tannic acid demonstrates excellent anti-UV, self-recovery, and skin-integration capacities[J]. ACS Appl Mater Interfaces, 2019, 11: 37502-37512. |
31 | JIJI S, UDHAYAKUMAR S, MAHARAJAN K, et al. Bacterial cellulose matrix with in situ impregnation of silver nanoparticles via catecholic redox chemistry for third degree burn wound healing[J]. Carbohydr Polym, 2020, 245: 116573. |
32 | SOBHANIAN P, KHORRAM M, HASHEMI S S, et al. Development of nanofibrous collagen-grafted poly(vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute[J]. Int J Biol Macromol, 2019, 130: 977-987. |
[1] | 颜丽娟, 高添贺, 施冬健, 陈明清. 丁香酚/改性聚乙烯醇抗菌复合膜的制备与性能[J]. 应用化学, 2023, 40(4): 527-535. |
[2] | 林渊, 陈嘉炼, 李红周. 单宁酸/聚乙烯醇的阻燃性能[J]. 应用化学, 2023, 40(1): 69-78. |
[3] | 张守村, 皮茂. 单体对聚乙烯醇乳化行为的影响及大孔材料的制备[J]. 应用化学, 2021, 38(1): 77-83. |
[4] | 黄刚, 张宏伟, 张欢欢, 石彤非, 许东华. 氧化石墨烯对聚乙烯醇/硼酸水凝胶流变性能的影响[J]. 应用化学, 2018, 35(7): 767-775. |
[5] | 孙琪, 王丽秋, 刘洋, 郭晨晓, 王鹏君, 刘学龙, 张晓博, 郑立辉, 刘丽萍. 近红外聚乙烯醇荧光高分子材料的制备及性能[J]. 应用化学, 2018, 35(1): 53-59. |
[6] | 关晓琳, 贾天明, 秦雨欣, 张东海, 张扬, 范红婷, 魏强兵, 来守军. 低温水相合成巯基化聚乙烯醇/CdS量子点纳米复合物及用于测定环境水样中痕量Cu2+[J]. 应用化学, 2017, 34(3): 291-299. |
[7] | 刘艳, 俞丹, 李维亚, 高翠翠, 王炜. 壳聚糖/聚乙烯醇共混膜在织物化学镀中的应用[J]. 应用化学, 2015, 32(2): 200-206. |
[8] | 邓新旺, 胡惠媛, 罗仲宽, 吴茂盛, 周莉. 肝素钠/聚乙烯醇复合水凝胶的制备与性能[J]. 应用化学, 2015, 32(12): 1358-1363. |
[9] | 贾谊, 朱春江, 秦争, 孙勇飞. 低聚端羟基聚硅氧烷接枝增韧酚醛树脂的制备及性能[J]. 应用化学, 2014, 31(05): 566-569. |
[10] | 范志恒, 周莉, 欧阳君君, 罗仲宽, 李妙妙. 化学-物理法制备聚乙烯醇/壳聚糖/纳米羟基磷灰石复合水凝胶及其性能[J]. 应用化学, 2014, 31(01): 61-64. |
[11] | 叶文波, 黄世俊, 关怀民, 童跃进. 超疏水聚硅氧烷涂层的制备及其性能[J]. 应用化学, 2012, 29(10): 1123-1129. |
[12] | 欧阳君君, 周莉. 多孔β-磷酸三钙/壳聚糖/聚乙烯醇复合水凝胶的制备与性能[J]. 应用化学, 2012, 29(09): 995-999. |
[13] | 赫玉欣, 张玉清. 热塑性淀粉/聚乙烯醇/蒙脱土三元纳米复合材料[J]. 应用化学, 2011, 28(07): 764-769. |
[14] | 赵水侠, 王来来. 有机硅氧烷预聚体的合成及其在化学固沙中的应用[J]. 应用化学, 2011, 28(07): 753-758. |
[15] | 姜国民, 赵群, 顾学芳, 张宇, 王绪荣,葛存旺. 亲水性聚硅氧烷改性天然乳胶的性能[J]. 应用化学, 2010, 27(02): 151-154. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1331
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 658
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||