应用化学 ›› 2022, Vol. 39 ›› Issue (11): 1652-1664.DOI: 10.19894/j.issn.1000-0518.220119
逯慧1,3, 李江1,2, 王丽华1,2, 诸颖1,2, 陈静1,2()
收稿日期:
2022-04-10
接受日期:
2022-07-05
出版日期:
2022-11-01
发布日期:
2022-11-09
通讯作者:
陈静
基金资助:
Hui LU1,3, Jiang LI1,2, Li-Hua WANG1,2, Ying ZHU1,2, Jing CHEN1,2()
Received:
2022-04-10
Accepted:
2022-07-05
Published:
2022-11-01
Online:
2022-11-09
Contact:
Jing CHEN
About author:
chenjing@sari.ac.cnSupported by:
摘要:
光催化技术可以直接将太阳能转化为化学能,制造化学燃料或环境友好的产品。然而,常用的光催化剂大多为具有宽能隙的半导体材料,所需光源大多在紫外区,对太阳光的利用率不高;并且电子-空穴复合率高,导致光催化反应效率低。币金属纳米团簇具有超小尺寸(<2 nm)和分立能级,能够实现电子和空穴的分离,电子结构可调,可以通过调节其电子结构进而提高其光催化性能。同时,精确的原子级组成和结构使其成为一种在原子水平上探索光催化机制的理想模型。本文报道了基于币金属纳米团簇的光催化反应的现状,包括水分解产氢、有机污染物降解和光催化氧化胺等。通过探讨调节币金属纳米团簇的光催化性能的策略,对币金属纳米团簇光催化剂的发展前景予以展望。
中图分类号:
逯慧, 李江, 王丽华, 诸颖, 陈静. 原子级精确的币金属纳米团簇在光催化应用方面的研究进展[J]. 应用化学, 2022, 39(11): 1652-1664.
Hui LU, Jiang LI, Li-Hua WANG, Ying ZHU, Jing CHEN. Researsh Progress of Photocatalytic Applications of Atomically Precise Coinage Metal Nanoclusters[J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1652-1664.
图1 半导体材料光催化过程: 电子-空穴对的产生、电荷转移、材料内部或表面的电子-空穴对复合、表面的电子和空穴诱导化学反应[4]
Fig.1 Photocatalytic process of semiconductor materials: electron-hole pair generation, charge transfer, electron-hole pair recombination in the bulk or at the surface, and electron and hole induced chemistry at the surface[4]
图3 (A) 可见光照射下Au x -GSH 敏化的 Pt/TiO2 纳米颗粒光催化系统的水分解反应机理示意图; (B)不同时间下Au x -GSH 敏化的 Pt/TiO2 纳米颗粒在可见光照射下的水解产氢量 (3B:M为mol/L) [24]
Fig.3 (A) Schematic illustration of Au x -GSH-Sensitized Pt/TiO2 NPs photocatalytic system for water splitting reaction under visible light illumination; (B) Time course of hydrogen evolution following the visible light illumination of an aqueous suspension of Au x -GSH-sensitized Pt/TiO2 nanoparticles (3B: M is mol/L) [24]
图4 (A) TiO2纳米粒子(TiO2 NP)、 Ag纳米粒子负载在TiO2上(Ag NP-TiO2)、 Ag44(SR)30负载在TiO2上 (1-TiO2(p)) 形成的光催化剂在紫外/可见光下的催化产氢性能; (B) Ag44/TiO2 光催化体系在可见光和紫外/可见光照射下产氢反应的电荷转移路径示意图; (C) 在紫外-可见光下对 1-TiO2(p) 纳米粒子产氢的循环测试[25]
Fig.4 (A)?Photocatalytic properties of TiO2 NP, Ag NP-TiO2 and 1-TiO2(p) under UV/Vis light; (B) Schematic illustration of the charge-transfer pathways in the Ag44/TiO2 photocatalytic system for H2 evolution?under irradiation with visible light and UV-Vis light; (C)?Cycling test over 1-TiO2(p) NPs under UV-Vis light[25]
图5 (A) TiO2-NS、UJN-Cu20和含有不同质量分数UJN-Cu20的 UJN-Cu20@TiO2-NS的光催化性能; (B) UJN-Cu20@TiO2-NS 的光催化析氢机理示意图[27](wt.%为质量分数)
Fig.5 (A) Photocatalytic properties of TiO2-NS, UJN-Cu20 and UJN-Cu20@TiO2-NS containing different mass percent UJN-Cu20; (B) Schematic presentation of the photocatalytic H2 evolution mechanism for UJN-Cu20@TiO2-NS[27](wt.% is mass percent)
图6 (A) 不添加催化剂、单纯TiO2和Au25(SR)18(0.94%)/TiO2在可见光照射下的光催化活性; (B) Au25(SR)18/TiO2在可见光照射下的光催化降解有机染料机理[31]
Fig.6 (A) The visible light photocatalytic activity of without the catalyst, pure TiO2 and Au25(SR)18(0.94%)/TiO2; (B) Mechanism of photocatalytic decomposition of organic dyes by Au25(SR)18/TiO2 under visible light irradiation[31]
图7 (A) TiO2、Cu54和Cu54/TiO2的固体紫外-可见吸收光谱; (B)苯酚在TiO2和含有不同质量分数Cu54的TiO2上的光催化降解; (C)可能的光催化苯酚降解机理[35]
Fig.7 (A) The solid UV-Vis absorption spectra of TiO2, Cu54 and Cu54/TiO2; (B) the photocatalytic degradation of phenol on Cu54/TiO2 and TiO2; (C) Possible mechanism of photocatalytic phenol degradation[35]
图8 (A) TiO2负载的Au25团簇光催化氧化苄胺的机理; (B) Au25/TiO2 催化剂上不同胺底物的光催化氧化[38]
Fig.8 (A) Proposed mechanism for photo-oxidation of benzylamine catalyzed by TiO2-suppported Au25 clusters; (B) Photocatalytic oxidation of a range of amine substrates over Au25/TiO2 catalyst[38]
图9 (A) [Au23-x Ag x (S-Adm)15] ( x =4~7) 的结构,Au:黄色,Ag: 粉红色、蓝色,S: 绿色,C: 灰色; (B) 在可见光照射下,RhB在Au23-x Ag x /TiO2、Au23/TiO2和 TiO2上的光催化降解[42]
Fig.9 (A) X-ray structure of [Au23-x Ag x (S-Adm)15] (x=4~7), Au: Yellow; Ag with full occupancy: pink; Ag with partial occupancy: blue; S: green; C: gray; (B) The photocatalytic degradation of RhB on Au23-x Ag x /TiO2, Au23/TiO2 and TiO2 under visible-light irradiation[42]
图10 L-半胱氨酸作为桥接配体将金属阳离子接枝到 Au NCs进行光催化CO2还原过程示意图[44]
Fig.10 Schematic illustration of the process of modifying Au clusters with L-cys ligands and further grafting them with metal cations for photocatalytic CO2 reduction[44]
图11 (A) Au-NC@UiO-68-NHC合成示意图; (B)不同光催化剂光催化产生CO量随时间变化图; (C)不同时间下Au-NC@UiO-68-NHC上的光催化CO2还原活性, AM 1.5G照射12 h[47]
Fig.11 (A) Schematic presentation for synthesis of Au-NC@UiO-68-NHC; (B) Time courses of CO evolution by photocatalytic CO2 reduction using different photocatalysts; (C) Time courses of photocatalytic CO2 reduction on Au-NC@UiO-68-NHC under AM 1.5G irradiation for 12?h[47]
图12 (A) Au38S2(SAdm)20 纳米团簇口袋状表面结构, Au:橙色,S:绿色,C:灰色,H:白色; (B) 光催化氧化苄胺为亚胺的反应[49]
Fig.12 (A) Au38S2(SAdm)20 nanocluster exhibits a pocketlike surface structure. Au: orange, S: green, C: grey, H: white; (B) Photocatalytic oxidation of benzylamine to imine[49]
1 | ARDO S, MEYER G J. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces[J]. Chem Soc Rev, 2009, 38(1): 115-164. |
2 | KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem Soc Rev, 2009, 38(1): 253-278. |
3 | CHEN H H, NANAYAKKARA C E, GRASSIAN V H. Titanium dioxide photocatalysis in atmospheric chemistry[J]. Chem Rev, 2012, 112(11): 5919-5948. |
4 | GUO Q, ZHOU C Y, MA Z B, et al. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges[J]. Adv Mater, 2019, 31(50): 1901997. |
5 | OPOKU F, GOVENDER K K, VAN SITTERT C G C E, et al. Enhancing charge separation and photocatalytic activity of cubic SrTiO3 with perovskite-type materials MTaO3 (M=Na, K) for environmental remediation: a first-principles study[J]. Chemistryselect, 2017, 2(22): 6304-6316. |
6 | MALATHI A, MADHAVAN J, ASHOKKUMAR M, et al. A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications[J]. Appl Catal A: Gen, 2018, 555: 47-74. |
7 | ZHANG P, ZHANG J J, GONG J L. Tantalum-based semiconductors for solar water splitting[J]. Chem Soc Rev, 2014, 43(13): 4395-4422. |
8 | CAO S W, LOW J X, YU J G, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Adv Mater, 2015, 27(13): 2150-2176. |
9 | CHENG L, XIANG Q J, LIAO Y L, et al. CdS-Based photocatalysts[J]. Energy Environ Sci, 2018, 11(6): 1362-1391. |
10 | LI Z Z, MENG X C, ZHANG Z S. Recent development on MoS2-based photocatalysis: a review[J]. J Photoch Photobio C, 2018, 35: 39-55. |
11 | CHEN J, ZHANG Q F, BONACCORSO T A, et al. Controlling gold nanoclusters by diphospine ligands[J]. J Am Chem Soc, 2014, 136(1): 92-95. |
12 | ZHU Q, HUANG X, ZENG Y, et al. Controllable synthesis and electrocatalytic applications of atomically precise gold nanoclusters[J]. Nanoscale Adv, 2021, 3(22): 6330-6341. |
13 | CHEN J, ZHANG Q F, WILLIARD P G, et al. Synthesis and structure determination of a new Au20 nanocluster protected by tripodal tetraphosphine ligands[J]. Inorg Chem, 2014, 53(8): 3932-3934. |
14 | LIU L C, CORMA A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles[J]. Chem Rev, 2018, 118(10): 4981-5079. |
15 | CHAKRABORTY I, PRADEEP T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles[J]. Chem Rev, 2017, 117(12): 8208-8271. |
16 | LU H, CHEN B, LI Y, et al. Benzyl-rich ligand engineering of the photostability of atomically precise gold nanoclusters[J]. Chem Commun, 2022, 58(14): 2395-2398. |
17 | FANG J, ZHANG B, YAO Q F, et al. Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters[J]. Coordin Chem Rev, 2016, 322: 1-29. |
18 | CHAI O J H, LIU Z H, CHEN T K, et al. Engineering ultrasmall metal nanoclusters for photocatalytic and electrocatalytic applications[J]. Nanoscale, 2019, 11(43): 20437-20448. |
19 | HOU B, KIM B S, LEE H K H, et al. Multiphoton absorption stimulated metal chalcogenide quantum dot solar cells under ambient and concentrated irradiance[J]. Adv Funct Mater, 2020, 30(39): 2004563. |
20 | NGUYEN C C, VU N N, DO T O. Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications[J]. J Mater Chem A, 2015, 3(36): 18345-18359. |
21 | WANG T, GONG J L. Single-crystal semiconductors with narrow band gaps for solar water splitting[J]. Angew Chem Int Ed, 2015, 54(37): 10718-10732. |
22 | TANG J F, LIU T L, MIAO S J, et al. Emerging energy harvesting technology for electro/photo-catalytic water splitting application[J]. Catalysts, 2021, 11(1): 142. |
23 | CHEN Y S, CHOI H, KAMAT P V. Metal-cluster-sensitized solar cells. a new class of thiolated gold sensitizers delivering efficiency greater than 2%[J]. J Am Chem Soc, 2013, 135(24): 8822-8825. |
24 | CHEN Y S, KAMAT P V. Glutathione-capped gold nanoclusters as photosensitizers. visible light-induced hydrogen generation in neutral water[J]. J Am Chem Soc, 2014, 136(16): 6075-6082. |
25 | WANG Y, LIU X H, WANG Q K, et al. Insights into charge transfer at an atomically precise nanocluster/semiconductor interface[J]. Angew Chem Int Ed, 2020, 59(20): 7748-7754. |
26 | YANG H Y, WANG Y, HUANG H Q, et al. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures[J]. Nat Commun, 2013, 4: 2422. |
27 | CAO Y D, HAO H P, LIU H S, et al. A 20-core copper (Ⅰ) nanocluster as electron-hole recombination inhibitor on TiO2 nanosheets for enhancing photocatalytic H2 evolution[J]. Nanoscale, 2021, 13(38): 16182-16188. |
28 | HU S Y, SUN Y N, FENG Z W, et al. Design and construction strategies to improve covalent organic frameworks photocatalyst's performance for degradation of organic pollutants[J]. Chemosphere, 2022, 286: 131646. |
29 | DONG H R, ZENG G M, TANG L, et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures[J]. Water Res, 2015, 79: 128-146. |
30 | ZHAO Y J, LI Y, SUN L D. Recent advances in photocatalytic decomposition of water and pollutants for sustainable application[J]. Chemosphere, 2021, 276: 130201. |
31 | YU C L, LI G, KUMAR S, et al. Stable Au25(SR)18/TiO2 composite nanostructure with enhanced visible light photocatalytic activity[J]. J Phys Chem Lett, 2013, 4(17): 2847-2852. |
32 | DENG C L, SUN C F, WANG Z, et al. A sodalite-type silver orthophosphate cluster in a globular silver nanocluster[J]. Angew Chem Int Ed, 2020, 59(31): 12659-12663. |
33 | ZHANG S Q, ZHAO L. A merged copper(I/II) cluster isolated from Glaser coupling[J]. Nat Commun, 2019, 10: 4848. |
34 | QU M, ZHANG F Q, WANG D H, et al. Observation of non-fcc copper in alkynyl-protected Cu53 nanoclusters[J]. Angew Chem Int Ed, 2020, 59(16): 6507-6512. |
35 | LIU L J, ZHANG J W, ASAD M, et al. A high-nuclearity CuI/CuII nanocluster catalyst for phenol degradation[J]. Chem Commun, 2021, 57(45): 5586-5589. |
36 | YE L, LI Z H. ZnIn2S4: a photocatalyst for the selective aerobic oxidation of amines to imines under visible light[J]. Chemcatchem, 2014, 6(9): 2540-2543. |
37 | ZHANG G M, WANG R R, LI G, et al. Non-metallic gold nanoclusters for oxygen activation and aerobic oxidation[J]. Chinese Chem Lett, 2018, 29(5): 687-693. |
38 | CHEN H J, LIU C, WANG M, et al. Visible light gold nanocluster photocatalyst: selective aerobic oxidation of amines to imines[J]. ACS Catal, 2017, 7(5): 3632-3638. |
39 | NEGISHI Y, MIZUNO M, HIRAYAMA M, et al. Enhanced photocatalytic water splitting by BaLa4Ti4O15 loaded with similar to 1 nm gold nanoclusters using glutathione-protected Au25 clusters[J]. Nanoscale, 2013, 5(16): 7188-7192. |
40 | NEGISHI Y, MATSUURA Y, TOMIZAWA R, et al. Controlled loading of small Aun clusters (n=10~39) onto BaLa4Ti4O15 photocatalysts: toward an understanding of size effect of cocatalyst on water-splitting photocatalytic activity[J]. J Phy Chem C, 2015, 119(20): 11224-11232. |
41 | KURASHIGE W, HAYASHI R, WAKAMATSU K, et al. Atomic-level understanding of the effect of heteroatom doping of the cocatalyst on water-splitting activity in AuPd or AuPt alloy cluster-loaded BaLa4Ti4O15[J]. ACS Appl Energ Mater, 2019, 2(6): 4175-4187. |
42 | LIU C, REN X Q, LIN F, et al. Structure of the Au23- xAgx(S-Adm)15 nanocluster and its application for photocatalytic degradation of organic pollutants[J]. Angew Chem Int Ed, 2019, 58(33): 11335-11339. |
43 | LIU X, YAO G, CHENG X L, et al. Cd-driven surface reconstruction and photodynamics in gold nanoclusters[J]. Chem Sci, 2021, 12(9): 3290-3294. |
44 | CUI X F, WANG J, LIU B, et al. Turning Au nanoclusters catalytically active for visible-light-driven CO2 reduction through bridging ligands[J]. J Am Chem Soc, 2018, 140(48): 16514-16520. |
45 | WANG S, TANG L, CAI B, et al. Ligand modification of Au25 nanoclusters for near-infrared photocatalytic oxidative functionalization[J]. J Am Chem Soc, 2022, 144(9): 3787-3792. |
46 | KAWAWAKI T, KATAOKA Y, HIRATA M, et al. Creation of high-performance heterogeneous photocatalysts by controlling ligand desorption and particle size of gold nanocluster[J]. Angew Chem Int Ed, 2021, 60(39): 21340-21350. |
47 | JIANG Y L, YU Y, ZHANG X, et al. N-Heterocyclic carbene-stabilized ultrasmall gold nanoclusters in a metal-organic framework for photocatalytic CO2 reduction[J]. Angew Chem Int Ed, 2021, 60(32): 17388-17393. |
48 | CHEN H J, PENG L M, BIAN Y C, et al. Exerting charge transfer to stabilize Au nanoclusters for enhanced photocatalytic performance toward selective oxidation of amines[J]. Appl Catal B: Environ, 2021, 284: 119704. |
49 | LI Z M, LIU C, ABORSHAN H, et al. Au38S2(SAdm)20 photocatalyst for one-step selective aerobic oxidations[J]. ACS Catal, 2017, 7(5): 3368-3374. |
50 | QIN Z X, ZHAO D, ZHAO L, et al. Tailoring the stability, photocatalysis and photoluminescence properties of Au11 nanoclusters via doping engineering[J]. Nanoscale Adv, 2019, 1(7): 2529-2536. |
51 | ZHOU M, ZENG C J, SFEIR M Y, et al. Evolution of excited-state dynamics in periodic Au28, Au36, Au44, and Au52 nanoclusters[J]. J Phys Chem Lett, 2017, 8(17): 4023-4030. |
[1] | 雷学博, 刘慧景, 丁赫宇, 申国栋, 孙润军. 用于降解印染废水中有机污染物的光催化剂的研究进展[J]. 应用化学, 2023, 40(5): 681-696. |
[2] | 刘盛杰, 叶永杰, 刘银怡, 林淑满, 谢浩源, 刘文婷, 许伟钦. 基于泡沫铜的多孔碳均匀负载Cu3P纳米颗粒的制备及其光催化降解染料性能[J]. 应用化学, 2022, 39(7): 1090-1097. |
[3] | 张晓丽, 彭玉美, 王庆伟, 秦利霞, 刘肖霞, 康诗钊, 李向清. 纳米Ag/TiO2纳米管阵列基底构建及表面增强拉曼散射光谱检测与降解盐酸四环素[J]. 应用化学, 2022, 39(7): 1147-1156. |
[4] | 徐一鑫, 王爽, 全静, 高婉婷, 宋天群, 杨梅. 二硫化钼量子点/还原氧化石墨烯复合材料的制备及其光催化降解有机染料、四环素和Cr(VI)[J]. 应用化学, 2022, 39(5): 769-778. |
[5] | 商林杰, 刘江, 兰亚乾. 共价有机框架材料用于光/电催化CO2还原的研究进展[J]. 应用化学, 2022, 39(4): 559-584. |
[6] | 王佳赫, 刘大勇, 刘伟, 王林, 董彪. 纳米TiO2光催化抗菌应用的研究进展[J]. 应用化学, 2022, 39(4): 629-646. |
[7] | 叶祥志, 邓云水, 刘源, 周咏柳, 贺建雄, 熊春荣. 玻璃球负载非晶态有机钛聚合物提高光催化还原CO2的转换频率[J]. 应用化学, 2022, 39(10): 1554-1563. |
[8] | 周玉凤, 周川巍, 胡桐泽, 段展鹏, 王颢潼, 石淑云. Fe/V-Sb2O3复合材料的构筑及光催化降解医药废水[J]. 应用化学, 2022, 39(10): 1572-1578. |
[9] | 杨玉萍, 徐绍红, 马国扬, 焦黎明, 孙莉萍, 夏然. 5-氘代利巴韦林衍生物的合成[J]. 应用化学, 2021, 38(8): 911-916. |
[10] | 赵星鹏, 王娅乔, 高生旺, 朱建超王国英, 夏训峰, 王洪良, 王书平. BiOBr/CeO2复合材料的制备及光催化降解磺胺异恶唑[J]. 应用化学, 2021, 38(4): 422-430. |
[11] | 唐飞, 杜多勤, 谭芸妃, 秦莉晓. 正六棱型MoO3-x微米柱光催化剂的制备及性能[J]. 应用化学, 2021, 38(1): 92-98. |
[12] | 张春华, 赵晓波, 李跃军, 孙大伟. (BiO)2CO3-Bi-TiO2复合纳米纤维制备及其光催化降解抗生素[J]. 应用化学, 2021, 38(1): 99-106. |
[13] | 蔡志锋, 武亮亮, 戚凯飞, 邓晨华, 张申, 张彩凤. 脯氨酸保护的铜纳米团簇的制备及其在三硝基苯酚检测中的应用[J]. 应用化学, 2021, 38(1): 107-115. |
[14] | 黄婕颖, 刘建军, 左胜利, 韩文静, 于迎春. Ag3PO4量子点/石墨相氮化碳纳米片复合光催化剂的制备及其对苯甲醇选择性氧化活性[J]. 应用化学, 2020, 37(9): 1030-1037. |
[15] | 张申, 郭玉玉. 一锅法合成聚乙烯吡咯烷酮修饰的铜纳米团簇用于槲皮素的检测[J]. 应用化学, 2020, 37(9): 1069-1075. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||