应用化学 ›› 2022, Vol. 39 ›› Issue (02): 272-282.DOI: 10.19894/j.issn.1000-0518.210083
收稿日期:
2021-03-01
接受日期:
2021-06-22
出版日期:
2022-02-10
发布日期:
2022-02-09
通讯作者:
何欧文,于宏兵
作者简介:
hongbingyu1130@sina.com基金资助:
Ou-Wen HE1,2(), Chang-Fu SUN3, Hong-Bing YU1()
Received:
2021-03-01
Accepted:
2021-06-22
Published:
2022-02-10
Online:
2022-02-09
Contact:
Ou-Wen HE,Hong-Bing YU
Supported by:
摘要:
采用廉价绿色离子液体[TEA][HSO4]作为溶剂,利用微波加热法辅助玉米芯水解并脱水制备糠醛。通过响应面法优化糠醛生成反应条件,有效转换玉米芯中的木糖,并得到82.2%糠醛收率。利用2-丁醇作为萃取剂对糠醛进行回收。重复4次萃取实验,从[TEA][HSO4]中回收99.7%糠醛。在2次[TEA][HSO4]的回收实验中,分别有58.3%和63.2%的[TEA][HSO4]被回收。重复使用结果显示,副产物羟甲基糠醛(HMF)收率并无明显下降,糠醛收率从82.2%分别下降至52.2%和41.3%。本文提供了一种在廉价绿色离子液体体系中高效催化玉米芯生产糠醛的新思路。
中图分类号:
何欧文, 孙长富, 于宏兵. 廉价离子液体体系中玉米芯生成糠醛优化[J]. 应用化学, 2022, 39(02): 272-282.
Ou-Wen HE, Chang-Fu SUN, Hong-Bing YU. Optimization on the Production of Furfural from Corncob in Cheap Ionic Liquid System[J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 272-282.
编号 | 生料 | 催化剂质量分数 | 反应时间 | HMF收率Y1 | 糠醛收率Y2 |
---|---|---|---|---|---|
Entry | Substrate | w(catalyst)/% | Reaction time/min | HMF yield Y1/% | /% Furfural yield Y2 |
1 | 木糖醇 b | 0 | 30 | 1.7±0.4 | 16.8±1.7 |
Xylitol | |||||
2 | 木糖醇 b | 0 | 120 | 2.5±0.9 | 14.6±2.2 |
Xylitol | |||||
3 | 木糖醇 a | 0 | 5 | 2.9±0.5 | 20.3±1.2 |
Xylitol | |||||
4 | 玉米芯 a | 0 | 5 | 5.8±0.4 | 3.1±0.1 |
Corncob | |||||
5 | 玉米芯 a | 3.3盐酸 | 5 | 5.8±1.0 | 14.9±2.7 |
Corncob | HCl | ||||
6 | 玉米芯 a | 3.3乙酸 | 5 | 4.3±0.1 | 4.9±2.7 |
Corncob | Acetic acid | ||||
7 | 木糖醇 a | 3.3%盐酸 | 5 | 2.9±0.2 | 20.4±1.2 |
Xylitol | HCl | ||||
8 | 木糖醇 a | 3.3乙酸 | 5 | 0.1±0.1 | 1.5±1.2 |
Xylitol | Acetic acid |
表1 生料、催化剂和加热方式对糠醛和HMF收率的影响
Table 1 Effect of substrates,catalysts and heating methods on the yield of furfural and HMF
编号 | 生料 | 催化剂质量分数 | 反应时间 | HMF收率Y1 | 糠醛收率Y2 |
---|---|---|---|---|---|
Entry | Substrate | w(catalyst)/% | Reaction time/min | HMF yield Y1/% | /% Furfural yield Y2 |
1 | 木糖醇 b | 0 | 30 | 1.7±0.4 | 16.8±1.7 |
Xylitol | |||||
2 | 木糖醇 b | 0 | 120 | 2.5±0.9 | 14.6±2.2 |
Xylitol | |||||
3 | 木糖醇 a | 0 | 5 | 2.9±0.5 | 20.3±1.2 |
Xylitol | |||||
4 | 玉米芯 a | 0 | 5 | 5.8±0.4 | 3.1±0.1 |
Corncob | |||||
5 | 玉米芯 a | 3.3盐酸 | 5 | 5.8±1.0 | 14.9±2.7 |
Corncob | HCl | ||||
6 | 玉米芯 a | 3.3乙酸 | 5 | 4.3±0.1 | 4.9±2.7 |
Corncob | Acetic acid | ||||
7 | 木糖醇 a | 3.3%盐酸 | 5 | 2.9±0.2 | 20.4±1.2 |
Xylitol | HCl | ||||
8 | 木糖醇 a | 3.3乙酸 | 5 | 0.1±0.1 | 1.5±1.2 |
Xylitol | Acetic acid |
自变量 | 自变量范围水平 | |
---|---|---|
Factor | Range | |
-1 | +1 | |
X1(反应温度Reaction temperature/℃) | 80 | 120 |
X2(反应时间Reaction time/min) | 0 | 20 |
X3(盐酸量V(HCl)/μL) | 34 | 85 |
X4(加热功率Heating power/W) | 50 | 300 |
X5([TEA][HSO4]质量分数Mass fraction of[TEA][HSO4]) | 80 | 90 |
表2 优化实验设计中的自变量
Table 2 Optimization of independent variables in experimental design
自变量 | 自变量范围水平 | |
---|---|---|
Factor | Range | |
-1 | +1 | |
X1(反应温度Reaction temperature/℃) | 80 | 120 |
X2(反应时间Reaction time/min) | 0 | 20 |
X3(盐酸量V(HCl)/μL) | 34 | 85 |
X4(加热功率Heating power/W) | 50 | 300 |
X5([TEA][HSO4]质量分数Mass fraction of[TEA][HSO4]) | 80 | 90 |
? | ? | ? | 自变量Factor | ? | 因变量Response | ||
---|---|---|---|---|---|---|---|
编号 | 温度/ | 时间 | 盐酸量 | 功率 | [TEA][HSO4]质量分数 | HMF产率Y3 | 糠醛产率Y4 |
Entry | Temperature/℃ | Time/min | V(HCl)/μL | Power/W | w([TEA][HSO4])/% | HMF yield | Furfural yield |
Y3/% | Y4/% | ||||||
1 | 120 | 20 | 34 | 300 | 90 | 5.4 | 50.8 |
2 | 100 | 10 | 60 | 175 | 85 | 2.3 | 46.7 |
3 | 120 | 0 | 85 | 300 | 80 | 3.1 | 50.8 |
4 | 80 | 0 | 85 | 50 | 90 | 3.6 | 38.4 |
5 | 120 | 0 | 85 | 50 | 80 | 9.2 | 60.7 |
6 | 120 | 0 | 34 | 300 | 80 | 13.1 | 57.5 |
7 | 80 | 0 | 85 | 50 | 80 | 0.0 | 39.1 |
8 | 80 | 20 | 85 | 50 | 90 | 4.4 | 43.0 |
9 | 100 | 10 | 60 | 300 | 85 | 15.1 | 62.8 |
10 | 80 | 0 | 34 | 50 | 90 | 17.2 | 55.2 |
11 | 80 | 0 | 34 | 300 | 80 | 9.7 | 30.1 |
12 | 80 | 0 | 34 | 50 | 80 | 1.5 | 3.0 |
13 | 120 | 20 | 34 | 300 | 80 | 14.1 | 69.2 |
14 | 100 | 20 | 60 | 175 | 85 | 7.9 | 61.1 |
15 | 80 | 20 | 34 | 300 | 80 | 1.8 | 18.2 |
16 | 100 | 10 | 34 | 175 | 85 | 21.0 | 62.1 |
17 | 120 | 20 | 85 | 50 | 90 | 0.0 | 47.1 |
18 | 120 | 0 | 85 | 50 | 90 | 4.4 | 30.8 |
19 | 120 | 0 | 34 | 300 | 90 | 15.9 | 60.5 |
20 | 80 | 20 | 34 | 300 | 90 | 8.2 | 44.8 |
21 | 120 | 10 | 60 | 175 | 85 | 5.9 | 54.9 |
22 | 120 | 0 | 85 | 300 | 90 | 11.0 | 60.7 |
23 | 120 | 20 | 85 | 300 | 90 | 0.0 | 32.2 |
24 | 80 | 0 | 85 | 300 | 90 | 8.7 | 37.0 |
25 | 100 | 10 | 0.07 | 175 | 90 | 16.9 | 52.3 |
26 | 80 | 20 | 85 | 50 | 80 | 0.0 | 21.8 |
27 | 120 | 0 | 34 | 50 | 90 | 26.4 | 69.9 |
28 | 120 | 20 | 85 | 300 | 80 | 2.3 | 48.3 |
29 | 100 | 10 | 60 | 175 | 80 | 4.9 | 14.7 |
30 | 80 | 10 | 60 | 175 | 85 | 2.6 | 37.9 |
31 | 80 | 0 | 34 | 300 | 90 | 5.4 | 25.5 |
32 | 100 | 0 | 60 | 175 | 85 | 0.0 | 23.4 |
33 | 80 | 0 | 85 | 300 | 80 | 2.3 | 13.8 |
34 | 80 | 20 | 34 | 50 | 80 | 3.1 | 30.3 |
35 | 80 | 20 | 85 | 300 | 90 | 3.6 | 47.4 |
36 | 100 | 10 | 60 | 175 | 85 | 6.4 | 65.3 |
37 | 100 | 10 | 60 | 175 | 85 | 6.3 | 65.1 |
38 | 100 | 10 | 60 | 175 | 85 | 6.4 | 66.2 |
39 | 120 | 20 | 34 | 50 | 90 | 9.0 | 63.0 |
40 | 80 | 20 | 85 | 300 | 80 | 0.0 | 27.4 |
41 | 120 | 0 | 34 | 50 | 80 | 7.7 | 50.1 |
42 | 80 | 20 | 34 | 50 | 90 | 0.0 | 32.4 |
43 | 120 | 20 | 85 | 50 | 80 | 5.4 | 51.7 |
44 | 100 | 10 | 60 | 50 | 85 | 26.4 | 40.2 |
45 | 120 | 20 | 34 | 50 | 80 | 7.7 | 63.7 |
46 | 100 | 10 | 85 | 175 | 85 | 6.4 | 57.7 |
表3 响应面实验设计及实验结果
Table 3 Response surface experimental design and experimental results
? | ? | ? | 自变量Factor | ? | 因变量Response | ||
---|---|---|---|---|---|---|---|
编号 | 温度/ | 时间 | 盐酸量 | 功率 | [TEA][HSO4]质量分数 | HMF产率Y3 | 糠醛产率Y4 |
Entry | Temperature/℃ | Time/min | V(HCl)/μL | Power/W | w([TEA][HSO4])/% | HMF yield | Furfural yield |
Y3/% | Y4/% | ||||||
1 | 120 | 20 | 34 | 300 | 90 | 5.4 | 50.8 |
2 | 100 | 10 | 60 | 175 | 85 | 2.3 | 46.7 |
3 | 120 | 0 | 85 | 300 | 80 | 3.1 | 50.8 |
4 | 80 | 0 | 85 | 50 | 90 | 3.6 | 38.4 |
5 | 120 | 0 | 85 | 50 | 80 | 9.2 | 60.7 |
6 | 120 | 0 | 34 | 300 | 80 | 13.1 | 57.5 |
7 | 80 | 0 | 85 | 50 | 80 | 0.0 | 39.1 |
8 | 80 | 20 | 85 | 50 | 90 | 4.4 | 43.0 |
9 | 100 | 10 | 60 | 300 | 85 | 15.1 | 62.8 |
10 | 80 | 0 | 34 | 50 | 90 | 17.2 | 55.2 |
11 | 80 | 0 | 34 | 300 | 80 | 9.7 | 30.1 |
12 | 80 | 0 | 34 | 50 | 80 | 1.5 | 3.0 |
13 | 120 | 20 | 34 | 300 | 80 | 14.1 | 69.2 |
14 | 100 | 20 | 60 | 175 | 85 | 7.9 | 61.1 |
15 | 80 | 20 | 34 | 300 | 80 | 1.8 | 18.2 |
16 | 100 | 10 | 34 | 175 | 85 | 21.0 | 62.1 |
17 | 120 | 20 | 85 | 50 | 90 | 0.0 | 47.1 |
18 | 120 | 0 | 85 | 50 | 90 | 4.4 | 30.8 |
19 | 120 | 0 | 34 | 300 | 90 | 15.9 | 60.5 |
20 | 80 | 20 | 34 | 300 | 90 | 8.2 | 44.8 |
21 | 120 | 10 | 60 | 175 | 85 | 5.9 | 54.9 |
22 | 120 | 0 | 85 | 300 | 90 | 11.0 | 60.7 |
23 | 120 | 20 | 85 | 300 | 90 | 0.0 | 32.2 |
24 | 80 | 0 | 85 | 300 | 90 | 8.7 | 37.0 |
25 | 100 | 10 | 0.07 | 175 | 90 | 16.9 | 52.3 |
26 | 80 | 20 | 85 | 50 | 80 | 0.0 | 21.8 |
27 | 120 | 0 | 34 | 50 | 90 | 26.4 | 69.9 |
28 | 120 | 20 | 85 | 300 | 80 | 2.3 | 48.3 |
29 | 100 | 10 | 60 | 175 | 80 | 4.9 | 14.7 |
30 | 80 | 10 | 60 | 175 | 85 | 2.6 | 37.9 |
31 | 80 | 0 | 34 | 300 | 90 | 5.4 | 25.5 |
32 | 100 | 0 | 60 | 175 | 85 | 0.0 | 23.4 |
33 | 80 | 0 | 85 | 300 | 80 | 2.3 | 13.8 |
34 | 80 | 20 | 34 | 50 | 80 | 3.1 | 30.3 |
35 | 80 | 20 | 85 | 300 | 90 | 3.6 | 47.4 |
36 | 100 | 10 | 60 | 175 | 85 | 6.4 | 65.3 |
37 | 100 | 10 | 60 | 175 | 85 | 6.3 | 65.1 |
38 | 100 | 10 | 60 | 175 | 85 | 6.4 | 66.2 |
39 | 120 | 20 | 34 | 50 | 90 | 9.0 | 63.0 |
40 | 80 | 20 | 85 | 300 | 80 | 0.0 | 27.4 |
41 | 120 | 0 | 34 | 50 | 80 | 7.7 | 50.1 |
42 | 80 | 20 | 34 | 50 | 90 | 0.0 | 32.4 |
43 | 120 | 20 | 85 | 50 | 80 | 5.4 | 51.7 |
44 | 100 | 10 | 60 | 50 | 85 | 26.4 | 40.2 |
45 | 120 | 20 | 34 | 50 | 80 | 7.7 | 63.7 |
46 | 100 | 10 | 85 | 175 | 85 | 6.4 | 57.7 |
差异源 | 平方和 | 自由度 | 均方 | F值 | P值 | ? |
---|---|---|---|---|---|---|
Source | Sum of squares | Degree of freedom(df) | Mean square | F-value | P-value | ? |
Model | 1312.95 | 20 | 65.65 | 2.44 | 0.018 2 | Significant |
X1 | 138.01 | 1 | 138.01 | 5.12 | 0.032 6 | ? |
X2 | 129.29 | 1 | 129.29 | 4.80 | 0.038 0 | ? |
X3 | 310.82 | 1 | 310.82 | 11.53 | 0.002 3 | ? |
X4 | 1.17 | 1 | 1.17 | 0.04 | 0.836 8 | ? |
X5 X1X2 | 86.4012.01 | 11 | 86.4012.01 | 3.210.45 | 0.085 50.510 6 | ? |
X1X3 | 49.01 | 1 | 49.01 | 1.82 | 0.189 6 | ? |
X1X4 | 6.84 | 1 | 6.84 | 0.25 | 0.618 7 | ? |
X1X5 | 16.82 | 1 | 16.82 | 0.62 | 0.436 9 | ? |
X2X3 | 13.78 | 1 | 13.78 | 0.51 | 0.481 2 | ? |
X2X4 | 1.36 | 1 | 1.36 | 0.05 | 0.824 0 | ? |
X2X5 | 77.50 | 1 | 77.50 | 2.88 | 0.102 3 | ? |
X3X4 | 0.28 | 1 | 0.28 | 0.01 | 0.919 4 | ? |
X3X5 | 7.41 | 1 | 7.41 | 0.28 | 0.604 6 | ? |
X4X5 | 10.81 | 1 | 10.81 | 0.40 | 0.532 2 | ? |
121.54 | 1 | 121.54 | 4.51 | 0.043 8 | ? | |
132.15 | 1 | 132.15 | 4.90 | 0.036 1 | ? | |
14.56 | 1 | 14.56 | 0.54 | 0.469 2 | ? | |
221.62 | 1 | 221.62 | 8.22 | 0.008 3 | ? | |
0.34 | 1 | 0.34 | 0.01 | 0.911 7 | ? | |
Residual | 673.71 | 25 | 26.95 | ? | ? | ? |
Lack of Fit | 661.08 | 22 | 30.05 | 7.14 | 0.0651 | Not significant |
Pure Error | 12.63 | 3 | 4.21 | ? | ? | ? |
Cor Total | 1 986.66 | 45 | ? | ? | ? | ? |
表4 HMF收率的二次回归模型方差分析
Table 4 Analysis of variance of the quadratic regression model of HMF yield
差异源 | 平方和 | 自由度 | 均方 | F值 | P值 | ? |
---|---|---|---|---|---|---|
Source | Sum of squares | Degree of freedom(df) | Mean square | F-value | P-value | ? |
Model | 1312.95 | 20 | 65.65 | 2.44 | 0.018 2 | Significant |
X1 | 138.01 | 1 | 138.01 | 5.12 | 0.032 6 | ? |
X2 | 129.29 | 1 | 129.29 | 4.80 | 0.038 0 | ? |
X3 | 310.82 | 1 | 310.82 | 11.53 | 0.002 3 | ? |
X4 | 1.17 | 1 | 1.17 | 0.04 | 0.836 8 | ? |
X5 X1X2 | 86.4012.01 | 11 | 86.4012.01 | 3.210.45 | 0.085 50.510 6 | ? |
X1X3 | 49.01 | 1 | 49.01 | 1.82 | 0.189 6 | ? |
X1X4 | 6.84 | 1 | 6.84 | 0.25 | 0.618 7 | ? |
X1X5 | 16.82 | 1 | 16.82 | 0.62 | 0.436 9 | ? |
X2X3 | 13.78 | 1 | 13.78 | 0.51 | 0.481 2 | ? |
X2X4 | 1.36 | 1 | 1.36 | 0.05 | 0.824 0 | ? |
X2X5 | 77.50 | 1 | 77.50 | 2.88 | 0.102 3 | ? |
X3X4 | 0.28 | 1 | 0.28 | 0.01 | 0.919 4 | ? |
X3X5 | 7.41 | 1 | 7.41 | 0.28 | 0.604 6 | ? |
X4X5 | 10.81 | 1 | 10.81 | 0.40 | 0.532 2 | ? |
121.54 | 1 | 121.54 | 4.51 | 0.043 8 | ? | |
132.15 | 1 | 132.15 | 4.90 | 0.036 1 | ? | |
14.56 | 1 | 14.56 | 0.54 | 0.469 2 | ? | |
221.62 | 1 | 221.62 | 8.22 | 0.008 3 | ? | |
0.34 | 1 | 0.34 | 0.01 | 0.911 7 | ? | |
Residual | 673.71 | 25 | 26.95 | ? | ? | ? |
Lack of Fit | 661.08 | 22 | 30.05 | 7.14 | 0.0651 | Not significant |
Pure Error | 12.63 | 3 | 4.21 | ? | ? | ? |
Cor Total | 1 986.66 | 45 | ? | ? | ? | ? |
差异源 | 平方和 | 自由度 | 均方 | F值 | P值 | ? |
---|---|---|---|---|---|---|
Source | Sum of squares | df | Mean square | F-value | P-value | ? |
Model | 8 280.92 | 20 | 414.05 | 2.33 | 0.023 6 | Significant |
X1 | 4 171.40 | 1 | 4 171.40 | 23.43 | <0.000 1 | ? |
X2 | 61.96 | 1 | 61.96 | 0.35 | 0.560 5 | ? |
X3 | 180.78 | 1 | 180.78 | 1.02 | 0.323 3 | ? |
X4 | 0.34 | 1 | 0.34 | 0.00 | 0.965 5 | ? |
X5 | 581.42 | 1 | 581.42 | 3.27 | 0.082 8 | ? |
X1X2 | 45.60 | 1 | 45.60 | 0.26 | 0.617 2 | ? |
X1X3 | 534.65 | 1 | 534.65 | 3.00 | 0.095 4 | ? |
X1X4 | 4.50 | 1 | 4.50 | 0.03 | 0.875 0 | ? |
X1X5 | 979.03 | 1 | 979.03 | 5.50 | 0.027 3 | ? |
X2X3 | 34.03 | 1 | 34.03 | 0.19 | 0.665 7 | ? |
X2X4 | 0.36 | 1 | 0.36 | 0.00 | 0.964 4 | ? |
X2X5 | 57.24 | 1 | 57.24 | 0.32 | 0.575 7 | ? |
X3X4 | 0.50 | 1 | 0.50 | 0.00 | 0.958 2 | ? |
X3X5 | 101.53 | 1 | 101.53 | 0.57 | 0.457 2 | ? |
X4X5 | 7.80 | 1 | 7.80 | 0.04 | 0.835 9 | ? |
13.32 | 1 | 13.32 | 0.07 | 0.786 7 | ? | |
103.35 | 1 | 103.35 | 0.58 | 0.453 2 | ? | |
308.04 | 1 | 308.04 | 1.73 | 0.200 3 | ? | |
19.01 | 1 | 19.01 | 0.11 | 0.746 6 | ? | |
571.54 | 1 | 571.54 | 3.21 | 0.085 3 | ? | |
Residual | 4 450.69 | 25 | 178.03 | ? | ? | ? |
Lack of Fit | 4 183.08 | 22 | 190.14 | 2.13 | 0.293 2 | Not significant |
Pure Error | 267.61 | 3 | 89.20 | ? | ? | ? |
Cor Total | 12731.60 | 45 | ? | ? | ? | ? |
表5 糠醛收率的二次回归模型方差分析
Table 5 Analysis of variance of the quadratic regression model of furfural yield
差异源 | 平方和 | 自由度 | 均方 | F值 | P值 | ? |
---|---|---|---|---|---|---|
Source | Sum of squares | df | Mean square | F-value | P-value | ? |
Model | 8 280.92 | 20 | 414.05 | 2.33 | 0.023 6 | Significant |
X1 | 4 171.40 | 1 | 4 171.40 | 23.43 | <0.000 1 | ? |
X2 | 61.96 | 1 | 61.96 | 0.35 | 0.560 5 | ? |
X3 | 180.78 | 1 | 180.78 | 1.02 | 0.323 3 | ? |
X4 | 0.34 | 1 | 0.34 | 0.00 | 0.965 5 | ? |
X5 | 581.42 | 1 | 581.42 | 3.27 | 0.082 8 | ? |
X1X2 | 45.60 | 1 | 45.60 | 0.26 | 0.617 2 | ? |
X1X3 | 534.65 | 1 | 534.65 | 3.00 | 0.095 4 | ? |
X1X4 | 4.50 | 1 | 4.50 | 0.03 | 0.875 0 | ? |
X1X5 | 979.03 | 1 | 979.03 | 5.50 | 0.027 3 | ? |
X2X3 | 34.03 | 1 | 34.03 | 0.19 | 0.665 7 | ? |
X2X4 | 0.36 | 1 | 0.36 | 0.00 | 0.964 4 | ? |
X2X5 | 57.24 | 1 | 57.24 | 0.32 | 0.575 7 | ? |
X3X4 | 0.50 | 1 | 0.50 | 0.00 | 0.958 2 | ? |
X3X5 | 101.53 | 1 | 101.53 | 0.57 | 0.457 2 | ? |
X4X5 | 7.80 | 1 | 7.80 | 0.04 | 0.835 9 | ? |
13.32 | 1 | 13.32 | 0.07 | 0.786 7 | ? | |
103.35 | 1 | 103.35 | 0.58 | 0.453 2 | ? | |
308.04 | 1 | 308.04 | 1.73 | 0.200 3 | ? | |
19.01 | 1 | 19.01 | 0.11 | 0.746 6 | ? | |
571.54 | 1 | 571.54 | 3.21 | 0.085 3 | ? | |
Residual | 4 450.69 | 25 | 178.03 | ? | ? | ? |
Lack of Fit | 4 183.08 | 22 | 190.14 | 2.13 | 0.293 2 | Not significant |
Pure Error | 267.61 | 3 | 89.20 | ? | ? | ? |
Cor Total | 12731.60 | 45 | ? | ? | ? | ? |
图3 反应温度和[TEA][HSO4]质量分数对糠醛收率的交互影响的3D响应面图
Fig.3 3D response surface diagram of the interaction of temperature and mass fraction of[TEA][HSO4]in water on furfural yield
编号 Entry | 反应温度 Temperature/℃ | 反应时间 Reactiontime/min | 盐酸量 V(HCl)/μL | 功率 Power/W | [TEA][HSO4]质量分数 w([TEA][HSO4])/% | P-HMF收率 P-HMF yield Y3/% | P-糠醛收率 P-furfural yield Y4/% | E-HMF收率 E-HMF yield Y1/% | E-糠醛收率 E-furfural yield Y2/% |
---|---|---|---|---|---|---|---|---|---|
1 | 110 | 7 | 34 | 50 | 87 | 25.9 | 74.8 | 24.5±0.8 | 81.9±1.1 |
2 | 110 | 8 | 34 | 300 | 87 | 24.4 | 74.4 | 24.1±0.2 | 82.2±4.3 |
表6 最佳反应条件
Table 6 The optimal reaction conditions
编号 Entry | 反应温度 Temperature/℃ | 反应时间 Reactiontime/min | 盐酸量 V(HCl)/μL | 功率 Power/W | [TEA][HSO4]质量分数 w([TEA][HSO4])/% | P-HMF收率 P-HMF yield Y3/% | P-糠醛收率 P-furfural yield Y4/% | E-HMF收率 E-HMF yield Y1/% | E-糠醛收率 E-furfural yield Y2/% |
---|---|---|---|---|---|---|---|---|---|
1 | 110 | 7 | 34 | 50 | 87 | 25.9 | 74.8 | 24.5±0.8 | 81.9±1.1 |
2 | 110 | 8 | 34 | 300 | 87 | 24.4 | 74.4 | 24.1±0.2 | 82.2±4.3 |
图4 糠醛和HMF回收实验图示中数字1~4表示第几次萃取实验;Left表示萃取实验结束后,残留于[TEA][HSO4]的糠醛和HMF
Fig.4 The recovery of furfural and HMFNumbers 1~4 indicate the sequence of extraction experiment;Left indicates that the remained furfural and HMF in[TEA][HSO4]after extraction experiments
[1] | 罗影龄, 薛智权, 易炜林, 等. 离子液体预处理生物质提高糖化产率[J]. 应用化学, 2014, 31(1):54-60. |
LUO Y L, XUE Z Q, YI W L, et al. Pretreatment of biomass with ionic liquid to improve saccharification yield[J]. Chinese J Appl Chem, 2014, 31(1):54-60. | |
[2] | ZHANG T, LI W, AN S, et al. Efficient transformation of corn stover to furfural usingp-hydroxybenzenesulfonic acid-formaldehyde resin solid acid [J]. Bioresour Technol, 2018, 264:261-267. |
[3] | 吴倩倩, 常璇, 马玉龙. 不同酸解聚麦秸产物分析及其动力学[J]. 应用化学, 2015, 32(7):794-800. |
WU Q Q, CHANG X, MA Y L. Depolymerization products and kinetics of wheat straw using different acids[J]. Chinese J Appl Chem, 2015, 32(7):794-800. | |
[4] | 欧阳洪生, 肖竹钱, 蒋成君, 等. 生物质基平台化合物糠醛的研究进展[J]. 应用化工, 2014, 43(10):1903-1907. |
OUYANG H S, XIAO Z Q, JIANG C J. Sources of pollution in furfural production and pollution prevention[J]. Appl Cheml Ind, 2014, 43(10):1903-1907. | |
[5] | 汪文睿, 项东. Al2(SO4)3催化玉米芯直接液化制备糠醛研究[J]. 应用化工, 2019, 48(7):1531-1534. |
WANG W R, XIANG D. Furfural production from direct liquefaction of corncob under catalytic of Al2(SO4)3 [J]. Appl Cheml Ind, 2019, 48(7):1531-1534. | |
[6] | 高月淑, 许敬亮, 袁振宏, 等. 木质纤维原料同步糖化发酵制取生物乙醇研究进展[J]. 生物质化学工程, 2016, 50(3):65-70. |
GAO Y S, XU J L, YUAN Z H, et al. Research progress in bioethanol production through simultaneous saccharification and fermentation with lignocellulose[J]. Biomass Chem Eng, 2016, 50(3):65-70. | |
[7] | ZHANG L X, GUO X Y, YU K, et al. Furfural production from biomass-derived carbohydrates and lignocellulosic residues via heterogeneous acid catalysts[J]. Ind Crop Prod, 2017, 98:68-75. |
[8] | CALCIO G, EMANUELA G C, MAElA M, et al. From waste biomass to chemicals and energy:via microwave-assisted processes[J]. Green Chem, 2019, 21:1202-1235. |
[9] | DAI X M. Metal chlorides in ionic liquids to convert saccharide dehydration to 5-hydroxymethyl-furaldehyde[D]. Tianjin University, 2008. |
[10] | LEI H, GENG Z, HAO W, et al. Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes[J]. RSC Adv, 2012, 2:11184-11206. |
[11] | MARISCAL R, MAIRELES T P, OJED A, et al. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energy Environ Sci, 2016, 9:1144-1189. |
[12] | KOJLI K, PRAJAPATI R, SHARMA B K. Bio-based chemicals from renewable biomass for integrated biorefineries[J]. Energies, 2019, 12(2):233-273. |
[13] | 王洪莉. 糠醛生产污染来源与污染防治[J]. 环境保护与循环经济, 2013, 33(6):45-46. |
WANG H L. Sources of pollution in furfural production and pollution prevention[J]. Environ Prot Circular Economy, 2013, 33(6):45-46. | |
[14] | 王福余, 刘艳丽, 王崇, 等. 果糖在酸性离子液体中脱水制备5-羟甲基糠醛[J]. 应用化学, 2014, 31(4):424-430. |
WANG F Y, LIU Y L, WANG C, et al. Dehydration of fructose in presence of acidic ionic liquids to prepare 5-hydroxymethylfurfural[J]. Chinese J Appl Chem, 2014, 31(4):424-430. | |
[15] | XING R, Qi W, HUBER G W. Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries[J]. Energy Environ Sci, 2014, 4:2193-2205. |
[16] | CAI C M, ZHANG T, KUMAR R, et al. Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass[J]. J Chem Technol Biotechnol, 2014, 89(1):2-10. |
[17] | PELETEIRO S, RIVAS S, ALONSO J L, et al. Furfural production using ionic liquids: a review[J]. Bioresour Technol, 2016, 202:181-191. |
[18] | LEE C B T L, WU T Y. A review on solvent systems for furfural production from lignocellulosic biomass[J]. Renew Sustainable Energy Rev, 2021, 137:110172. |
[19] | PELETEIRO S, SANTOS V, GARROTE G, et al. Furfural production from Eucalyptus wood using an acidic ionic liquid[J]. Carbohydr Polym, 2016, 146:20-25. |
[20] | LI C, ZHAO Z. Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid[J]. Adv Synth Catal, 2007, 349(11/12):1847-1850. |
[21] | MARINA C, KRISTINA R, RADOJI R. A brief overview of the potential environmental hazards of ionic liquids[J]. Ecotoxicol Environ Saf, 2014, 99:1-12. |
[22] | KHASHAYAR G. A review of ionic liquids, their limits and applications[J]. Green Sustainable Chem, 2014, 4:44-53. |
[23] | AGNIESZKA B T, FLORENCE J V G, PAUL S F, et al. An economically viable ionic liquid for the fractionation of lignocellulosic biomass[J]. Green Chem, 2017, 19:3078-3102. |
[24] | FLORENCE G, FRANCISCO M, SOMNATH S, et al. Rapid pretreatment of Miscanthus using the low-cost ionic liquid triethylammonium hydrogen sulfate at elevated temperatures[J]. Green Chem, 2018, 20:3486-3498. |
[25] | BAAQEL H, DIAZ I, TULUS V, et al. Role of life-cycle externalities in the valuation of protic ionic liquids-a case study in biomass pretreatment solvents[J]. Green Chem, 2020, 22:3132-3140. |
[26] | BRAND A, GRASVIK J, HALLET J. P, et al. Deconstruction of lignocellulosic biomass with ionic liquids[J]. Green Chem, 2013, 15:550-583. |
[27] | CHAMBON C L, FITRIYANTI V, VERD?A P, et al. Fractionation by sequential antisolvent precipitation of grass, softwood, and hardwood lignins isolated using low-cost ionic liquids and water[J]. ACS Sustainable Chem Eng, 2020, 8:3751-3761. |
[28] | BRANDA, RAY M J, TO T Q, et al. Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures[J]. Green Chem, 2011, 13:2489-2499. |
[29] | ZAHARI S M S N S, AMIN A T M, HALIM N M, et al. Deconstruction of Malaysian agro-wastes with inexpensive and bifunctional triethylammonium hydrogen sulfate ionic liquid[C]. Proceedings of the AIP Conference Proceedings; 2018. |
[30] | SHIKH Z S M S N, HAZEEQ A L K. Triethylammonium hydrogen sulfate ionic liquid as a low-cost solvent: a short review of synthesis, analysis and applications[C]. AIP Conference Proceedings, 2018. |
[31] | SLUITER A. Determination of structural carbohydrates and lignin in biomass[J]. Biomass Anal Technol Team Lab Anal Proced, 2004. |
[32] | 刘苏, 李宁, 戴晓莉, 等. 响应面法优化葡萄糖脱水制备5-羟甲基糠醛[J]. 淮阴师范学院学报(自然科学版), 2019, 18(2):130-137. |
LIU S, LI N, DAI X L, et al. Optimization of glucose dehydration into 5-hydroxymethylfulfural by response surface methodology[J]. J Huaiyin Teachers College (Nat Sci Ed), 2019, 18(2):130-137. | |
[33] | EMANUELA C G, GIANCARLO C, MAELA M, et al. From waste biomass to chemicals and energy via microwave-assisted processes[J]. Green Chem, 2019, 21:1202-1235. |
[34] | LI X, LIU Q, LUO C, et al. Kinetics of furfural production from corn cob in γ-valerolactone using diluted sulfuric acid as catalyst[J]. ACS Sustainable Chem Eng, 2017, 5:8587-8593. |
[35] | ROQUE L R, MORGADO G P, NASCIMENTO V M, et al. Liquid-liquid extraction: a promising alternative for inhibitors removing of pentoses fermentation[J]. Fuel, 2019, 242:775-787. |
[36] | ZHANG Y, GUO X, XU J, et al. Liquid-liquid equilibrium for ternary systems, water+5-hydroxymethylfurfural+(1-butanol, isobutanol, methyl isobutyl ketone), at 313.15, 323.15, and 333.15 K[J]. J Chem Eng Data, 2018, 63:2775-2782. |
[37] | ANASTAS P, NICOLAS E. Green chemistry: principles and practice[J]. Chem Soc Rev, 2010, 39(1):301-312. |
[1] | 杨玉雯, 齐婧瑶, 李林, 楚国宁, 王赛, 张钰, 张爽. 磁性NiFe2O4负载Ru催化5-羟甲基糠醛选择性氧化合成2,5-呋喃二甲酸[J]. 应用化学, 2023, 40(6): 879-887. |
[2] | 李慧慧, 姚开胜, 赵亚南, 范李娜, 田钰琳, 卢伟伟. 离子液体调控合成Pt-Pd双金属纳米材料及其催化氨硼烷水解释氢[J]. 应用化学, 2023, 40(4): 597-609. |
[3] | 陈启航, 许飞健, 王锋, 傅双婵, 于英豪. 低共熔溶剂及其在抗静电领域中应用的研究进展[J]. 应用化学, 2023, 40(3): 341-359. |
[4] | 吴双, 赵德扬, 吴胜寒, 魏立纲, 刘娜, 安庆大. 1-丁基-3-甲基咪唑甲基磺酸盐水溶液中酚型木质素单体溶解的二维相关红外光谱分析[J]. 应用化学, 2022, 39(10): 1600-1609. |
[5] | 钮占宁, 唐好庆, 郑超, 田甜, 郑立允. 密度泛函理论研究烷基乙醇仲胺溴离子液体表面改性四氧化三铁[J]. 应用化学, 2021, 38(7): 825-835. |
[6] | 周超, 生程钜, 闻林林. 咪唑盐类聚离子液体抗菌剂的制备及其在水凝胶敷料中的应用[J]. 应用化学, 2021, 38(1): 51-59. |
[7] | 刘宁, 王丹凤, 伍素云, 刘水林, 付琳, 刘跃进. 短孔道介孔分子筛Zr-Ce-SBA-15固载酸性离子液体催化合成双酚F[J]. 应用化学, 2020, 37(9): 1038-1047. |
[8] | 郭辉, 殷园园, 张学颖, 庄玉伟, 曹健, 张国宝. 酸性离子液体催化合成N-氰乙基-N-羟乙基苯胺[J]. 应用化学, 2020, 37(5): 512-517. |
[9] | 马浩, 赵雪, 李坤兰, 邵国林, 安庆大, 杨丽玉, 魏立纲. 硅烷基咪唑双三氟甲烷磺酰亚胺离子液体气相色谱固定相的性能评价[J]. 应用化学, 2020, 37(4): 447-454. |
[10] | 张爽, 张龙. 乙烯焦油炭磺酸催化果糖脱水合成5-羟甲基糠醛[J]. 应用化学, 2020, 37(3): 314-321. |
[11] | 喻昌木, 张荣, 卢小鸾, 杨敏, 彭黔荣. 具有过氧化物酶活性的Imm-Fe3+-IL的制备及用于比色法测定H2O2和葡萄糖[J]. 应用化学, 2020, 37(10): 1211-1220. |
[12] | 高博, 杨宏伟, 田少鹏, 赵玉真, 田甜. 1-烷基-4-氨基-1,2,4-三唑类含能离子液体的溶解性能[J]. 应用化学, 2019, 36(9): 1044-1052. |
[13] | 宋飞跃, 薛泳波, 高欣, 白玲, 李靖, 邓芸, 谢利娟, 阮文权. 不同离子液体双水相萃取钯[J]. 应用化学, 2019, 36(3): 335-340. |
[14] | 郭一江, 陈庆德, 沈兴海. 新型离子液体1-烷基-3-甲基咪唑苯甲酰基三氟硼酸盐的合成与性质[J]. 应用化学, 2019, 36(10): 1186-1193. |
[15] | 朱云, 洪亮, 金葆康. 高温红外光谱电化学薄层池的制作与表征[J]. 应用化学, 2019, 36(1): 107-113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||