[1] |
MARSELLA M J, REID R J. Toward molecular muscles: design and synthesis of an electrically conducting poly [cyclooctatetrathiophene] [J]. Macromolecules, 1999, 32(18):5982-5984.
|
[2] |
DADVAND A, CICOIRA F, KONSTANTIN Y C, et al. Heterocirculenes as a new class of organic semiconductors[J]. Chem Commun, 2008(42):5354-5356.
|
[3] |
FUJIMOTO T, MATSUSHITA M M, YOSHIKAWA H Y, et al. Electrochemical and electrochromic properties of octathio[8]circulene thin films in ionic liquids[J]. J Am Chem Soc, 2008, 130(47):15790-15791.
|
[4] |
ZHAO C M, XU L, WANG Y, et al. Recent progress in the synthesis and application of saddle-shaped cyclooctatetrathiophenes and their derivatives[J]. Chinese J Chem, 2015, 33(1):71-78.
|
[5] |
LI L, ZHAO C M, WANG H. Recent progress in synthesis and application of thiophene oligomers based on bithiophene dicarbanions[J]. Chem Rec, 2016, 16(2):797-809.
|
[6] |
GREVIIIG B, WOLTERMANN A, KAUFMANN T. Preparation and properties of cycloocta[1, 2-b:4, 3-b′:5, 6-b″:8, 7-b′″]tetrathiophene[J]. Angew Chem Int Ed, 1974, 13(7):467-468.
|
[7] |
WANG Y, SONG J S, XU L, et al. Synthesis and characterization of cyclooctatetrathiophenes with different connection sequences[J]. J Org Chem, 2014, 79(5):2255-2262.
|
[8] |
KAUFFMANN T, MACKOWIAK H P. 2-Lithio-(all-αS) cyclotetrathiophen: synthese und präparative anwendungen[J]. Chem Ber, 1985, 118(6):2343-2352.
|
[9] |
WANG Y, GAO D W, SHI J W, et al. Derivation of saddle shaped cyclooctatetrathiophene: increasing conjugation and fabricating pentamer[J]. Tetrahedron, 2014, 70(3):631-636.
|
[10] |
ZHAO C M, CAI X, MA Z Y, et al. Excimer from particially overlapped anthracene dimer based on saddle-shaped cyclooctatetrathiophene as spacer[J]. J Photoch Photobio A, 2018, 355318-325.
|
[11] |
MARSELLA M J, KIM I T, THAM F. Toward conjugated double helical ladder polymers: cyclooctatetrathiophene as a highly versatile double helical scaffold[J]. J Am Chem Soc, 2000, 122(5):974-975.
|
[12] |
LI C L, SHI J W, XU L, et al. Syntheses and crystal structures of fused thiophenes:[7]helicene and double helicene, a D2-symmetric dimer of 3, 3′-bis (dithieno[2, 3-b:3′, 2′-d]thiophene)[J]. J Org Chem, 2009, 74(1):408-411.
|
[13] |
ZHANG S, LIU X M, LI C L, et al. Thiophene-based double helices: syntheses, X-ray structures, and chiroptical properties[J]. J Am Chem Soc, 2016, 138(31):10002-10010.
|
[14] |
ZHAO C M, MA Z Y, LI C L, et al. Thiophene and naphthalene-based double helix: synthesis, structures and chirality[J]. Chinese Chem Lett, 2021, 32(1):457-460.
|
[15] |
CHERNICHENKO K Y, SUMERIN V V, SHPANCHENKO R V, et al. “Sulflower”: a new form of carbon sulfide[J]. Angew Chem Int Ed, 2006, 45(44):7367-7370.
|
[16] |
LI L, LI B B, LI C L, et al. Selective deprotonation of tetra[3, 4]thienylene in the presence of n-BuLi[J]. Org Chem Front, 2017, 4(6):1019-1023.
|
[17] |
OHMAE T, NISHINAGA T, WU M, et al. Cyclic tetrathiophenes planarized by silicon and sulfur bridges bearing antiaromatic cyclooctatetraene core: syntheses, structures, and properties[J]. J Am Chem Soc, 2010, 132(3):1066-1074.
|
[18] |
SUN C J, WANG P F, WANG H, et al. All-thiophene-based conjugated porous organic polymers[J]. Polym Chem, 2016, 7(31):5031-5038.
|
[19] |
MARSELLA M J, REID R J, ESTASSI S, et al. Tetra[2, 3-thienylene]: a building block for single-molecule electromechanical actuators[J]. J Am Chem Soc, 2002, 124(42):12507-12510.
|
[20] |
MARSELLA M J. Classic annulenes, nonclassical applications[J]. Acc Chem Res, 2002, 35(11):944-951.
|
[21] |
LUO J D, XIE Z L, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chem Commun, 2001(18):1740-1741.
|
[22] |
TANG B Z, ZHAN X W, YU G, et al. Efficient blue emission from siloles[J]. J Mater Chem, 2001, 11(12):2974-2978.
|
[23] |
MEI J, LEUNG N L C, KWOK R T K, et al. Aggregation-induced emission: together we shine, united we soar[J]. Chem Rev, 2015, 115(21):11718-11940.
|
[24] |
HE Z K, KE C Q, TANG B Z. Journey of aggregation-induced emission research[J]. ACS Omega, 2018, 3(3):3267-3277.
|
[25] |
ZHAO Z, ZHENG X Y, DU L L, et al. Non-aromatic annulene-based aggregation-induced emission system via aromaticity reversal process[J]. Nat Commun, 2019(10):2952.
|
[26] |
张卫杰, 徐莉, 宋金生, 等. “马鞍型”环八四噻吩-三嗪体系的合成与聚集诱导发光(AIE)性质研究[J]. 有机化学, 2018, 38(5):1119-1125.
|
|
ZHANG W J, XU L, SONG J S, et al. Synthesis of saddle-shaped cyclooctatetrathiophene-triazine derivatives and their aggregation induced emissions (AIE) properties[J]. Chinese J Org Chem, 2018, 38(5):1119-1125.
|
[27] |
LIU M Y, GAO P, WAN Q, et al. Recent advances and future prospects of aggregation-induced emission carbohydrate polymers[J]. Macromol Rapid Commun, 2017, 38(10):1600575.
|
[28] |
PICARD-LAFON A, DAIGLE M, MORIN J F. Tetraphenylethene-diyne hybrid nanoparticles from glaser-type dispersion polymerization[J]. RSC Adv, 2017, 7(57):36132-36137.
|
[29] |
FAISAL M, HONG Y N, LIU J Z, et al. Fabrication of fluorescent silica nanoparticles hybridized with AIE luminogens and exploration of their applications as nanobiosensors in intracellular imaging[J]. Chem Eur J, 2010, 16(14):4266-4272.
|
[30] |
PEREGO C, MILLINI R. Porous materials in catalysis: challenges for mesoporous materials[J]. Chem Soc Rev, 2013, 42(9):3956-3976.
|
[31] |
MAY A, PASC A, STÉBÉM J, et al. Tailored jeffamine molecular tools for ordering mesoporous silica[J]. Langmuir, 2012, 28(25):9816-9824.
|
[32] |
SON W J, CHOI J S, AHN W S. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials[J]. Micropor Mesopor Mat, 2008, 113(1/2/3):31-40.
|
[33] |
SLOWING I I, TREWYN B G, GIRI S, et al. Mesoporous silica nanoparticles for drug delivery and biosensing applications[J]. Adv Funct Mater, 2007, 17(8):1225-1236.
|
[34] |
ZHOU Y X, QUAN G L, WU Q L, et al. Mesoporous silica nanoparticles for drug and gene delivery[J]. Acta Pharm Sin B, 2018, 8(2):165-177.
|
[35] |
MATSUURA A, KOMASTU K. Efficient synthesis of benzene and planar cyclooctatetraene fully annelated withbicycle[2.1.1]hex-2-ene[J]. J Am Chem Soc, 2001, 123(8):1768-1769.
|
[36] |
WANG Y G, WANG Z H, ZHAO D F, et al. Efficient synthesis of trimethyl-substituted dithieno[2, 3-b:3′, 2′-d]thiophene, tetra[2, 3-thienylene]and hexa[2, 3-thienylene]from substituted[3, 3′]bithiophenyl[J]. Synlett, 2007(5):2390-2394.
|
[37] |
YANG Y J, GU Y R, MA Z Y, et al. Aggregation-induced emission and pressure-dependent fluorescent of aryl cyclooctatetrathiophenes[J]. Dyes Pigm, 2021, 184:108803.
|