[1] 澎湃新闻. 新冠肺炎疫情快讯[OL]. [2021-3-18]. https://www.thepaper.cn/newsDetail_forward_11764178. The Paper. COVID-19 epidemic News[OL]. [2021-3-18]. https://www.thepaper.cn/newsDetail_forward_11764178. [2] BAKANIDZE L, IMNADZE P, PERKINS D. Biosafety and biosecurity as essential pillars of international health security and cross-cutting elements of biological nonproliferation[J]. BMC Public Health, 2010, 10(Supp l 1): S12. [3] LAURA A M, JAMIE K R. Biosecurity: moving toward a comprehensive approach[J]. Bioscience, 2002, 52(7): 593-600. [4] YU Y J, BU F Q, ZHOU H L, et al. Biosafety materials an emerging new research direction of materials science from COVID-19 outbreak[J]. Mater Chem Front, 2020, 260:112983. [5] 唐东升, 崔建勋, 梁刚豪, 等. 发展生物安全材料学,筑牢中国国家安全城墙[J]. 应用化学, 2020, 37(9): 985-993. TANG D S, CUI J X, LIANG G H, et al. Developing biosafety materials science and building the national security wall of China[J]. Chinese J Appl Chem, 2020, 37(9): 985-993. [6] LI Z, YI Y, LUO X, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis[J]. J Med Virol, 2020, 92(9): 1518-1524. [7] TORRENTE-RODRIGUEZ R M, LUKAS H, TU J, et al. SARS-CoV-2 rapidPlex: a graphene-based multiplexed platform for rapid and low-cost COVID-19 diagnosis and monitoring[J]. Matter, 2020, 3(6): 1981-1998. [8] LIU X, LIU C, LIU G, et al. COVID-19: progress in diagnostics, therapy and vaccination[J]. Theranostics, 2020, 10(17): 7821-7835. [9] QIU G, GAI Z, TAO Y, et al. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection[J]. ACS Nano, 2020, 14(5): 5268-5277. [10] KURZA TKOWSKA K, SIRKO A, ZAGORSKI-OSTOJA W, et al. An electrochemical label-free and reagentless genosensor based on an ical barrier switch-off system for DNA sequence-specific detection of the Avian influenza virus[J]. Anal Chem, 2015, 87(19): 9702-9709. [11] ILKHANI H, FARHAD S. A novel electrochemical DNA biosensor for Ebola virus detection[J]. Anal Biochem, 2018, 557: 151-155. [12] SUBAK H, DISAL O A. Label-free electrochemical biosensor for the detection of Influenza genes and the solution of guanine-based displaying problem of DNA hybridization[J]. Sen Actuators B, 2018, 263: 196-207. [13] ALVES R D F, FRANCO D L, CORDEIRO M T, et al. Novel electrochemical genosensor for Zika virus based on a poly-(3-amino-4-hydroxybenzoic acid)-modified pencil carbon graphite electrode[J]. Sens Actuators B, 2019, B296(OCT.): 126681.1-126681.10. [14] MAHARIA S, AKANKSHA R, DEEPSHIKHA S, et al. eCovSens-Ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2[J]. BioRxiv, 2020-5-11, https://doi.org/10.1101/2020.04.24.059204[preprint]. [15] DUAN D, FAN K, ZHANG D, et al. Nanozyme-strip for rapid local diagnosis of Ebola[J]. Biosens Bioelectron, 2015, 74: 134-141. [16] JACKSON L A, ANDERSON E J, ROUPHAEL N G, et al. An mRNA vaccine against SARS-CoV-2-preliminary report[J]. N Engl J Med, 2020, 383(20): 1920-1931. [17] ZHU F C, LI Y H, GUAN X H, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial[J]. Lancet, 2020, 395(10240): 1845-1854. [18] ISLAM M A, REESOR E K G, XU Y, et al. Biomaterials for mRNA delivery[J]. Biomater, 2015, 3(12): 1519-1533. [19] DAHLMAN J E, BARNES C, KHAN O, et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight[J]. Nat Nanotechnol, 2014, 9(8): 648-655. [20] HAN X, SHEN S, FAN Q, et al. Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy[J]. Sci Adv, 2019, 5(10): eaaw6870. [21] TAN A, DE L P H, SEIFALIAN A M. The application of exosomes as a nanoscale cancer vaccine[J]. Int J Nanomed, 2010, 10(5): 889-900. [22] UKIDVE A, ZHAO Z M, FEHNEL A, et al. Erythrocyte-driven immunization via biomimicry of their natural antigen-presenting function[J]. Proc Natl Acad Sci USA, 2020, 117(30): 17727-17736. [23] KIM Y, PARK J, PRAUSNITZ M R.Microneedles for drug and vaccine delivery[J]. Adv Drug Deliv Rev, 2012, 64(14): 1547-1568. [24] JEFFERSON T, MAR C D, DOOLEY L, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses: systematic review[J]. BMJ, 2009, 339: b3675. [25] LEUNG W W F, SUN Q. Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (COVID-19) and nano-aerosols[J]. Sep Purif Technol, 2020, 250: 116886. [26] LEUNG W W F, SUN Q. Charged PVDF multilayer nanofiber filter in filtering simulated airborne novel coronavirus (COVID-19) using ambient nano-aerosols[J]. Sep Purif Technol, 2020, 245: 116887. [27] XIE X S, ZHENG Z Z, WANG Z X, et al. Low-density silk nanofibrous aerogels: fabrication and applications in air filtration and oil/water purification[J]. ACS Nano, 2021-1-13. https://dx.doi.org/10.1021/acsnano.0c07896.[published online ahead of print]. [28] ZHONG H, ZHU Z, LIN J, et al. Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances[J]. ACS Nano, 2020, 14(5): 6213-6221. [29] LI P, LI J, FENG X, et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning[J]. Nat Commun, 2019, 10(1):2177. [30] HORVÀTH E, ROSSI L, MERCIER C, et al. Photocatalytic nanowires-based air filter: towards reusable protective masks[J]. Adv Funct Mater, 2020, 30(40): 2004615. [31] HUANG L, XU S, WANG Z, et al. Self-reporting and photothermally enhanced rapid bacterial killing on a laser-induced graphene mask[J]. ACS Nano, 2020, 14(9): 12045-12053. [32] ZHONG H,ZHU Z R, YOU P, et al. Plasmonic and superhydrophobic self-decontaminating N95 respirators[J]. ACS Nano, 2020, 14(7):8846-8854. [33] QIN T, MA R, YIN Y, et al. Catalytic inactivation of influenza virus by iron oxide nanozyme[J]. Theranostics, 2019, 9(23): 6920-6935. [34] 傅曦. 新冠病毒颗粒浓度检测智能口罩及其检测方法: 中国, CN111408081A[P]. 2020-7-12. FU X. Novel Coronavirus particle concentration detection smart mask and its detection method: China, CN111408081A[P]. 2020-7-12. [35] OLU O, KARGBO B, KAMARA S, et al. Epidemiology of Ebola virus disease transmission among health care workers in Sierra Leone, may to december 2014: a retrospective descriptive study[J]. BMC Infect Dis, 2015, 15: 416. [36] DYE C, WILLIAMS B G. The population dynamics and control of tuberculosis[J].Science, 2010, 328(5980): 856-861. [37] KARIM N, AFROJ S, LLOYD K, et al. Sustainable personal protective clothing for healthcare applications: a review[J]. ACS Nano, 2020, 14(10): 12313-12340. [38] SI Y, ZHANG Z, WU W, et al. Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications[J]. Sci Adv, 2018, 4(3): eaar5931. [39] YE Z P, LI S Y, ZHAO S Y, et al. Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties[J]. Chem Eng J, 2020: 127680. [40] 管滢芸, 李慧, 石浩强. 传染病疫情下常见消毒剂的合理使用[J].中国医刊, 2020, 55(05): 465-467. GUAN Y Y, LI H, SHI H Q. Rational use of common disinfectants in infectious diseases[J]. Chinese J Med, 2020, 55(05): 465-467. [41] 姜炎硕, 宋智鹏, 王宪钰, 等. 新型消毒剂的研发进展[J]. 世界最新医学信息文摘, 2019, 19(61): 82. JIANG Y S, SONG Z P, WANG X Y, et al. Development of new disinfectants[J]. World Latest Medicine, 2019, 19(61): 82-83. [42] GUO Z, WANG Z, ZHANG S, et al. Aerosol and surface distribution of severe acute respiratory syndrome Coronavirus 2 in hospital Wards, Wuhan, China, 2020[J]. Emerg Infect Dis, 2020, 26(7): 1583-1591. [43] ELECHIGUERRA J L, BURT J, MORONES J R, et al. Interaction of silver nanoparticles with HIV-I[J]. J Nanobiotechnol, 2005, 3: 6. [44] ROGERS J V, PARKINSON C V, CHOI Y W, et al. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation[J]. Nanoscale Res Lett, 2008, 3(4): 129-133. [45] DU T, LIANG J, DONG N, et al. Glutathione-capped Ag2S nanoclusters inhibit Coronavirus proliferation through blockage of viral RNA synthesis and budding[J]. ACS Appl Mater Interfaces, 2018, 10(5): 4369-4378. [46] WARNES S L, LITTLE Z R, KEEVIL C W, et al. Human Coronavirus 229E remains infectious on common touch surface materials[J]. mBio, 2015, 6(6): e1697-1715. [47] HAN J, CHEN L, DUAN S M, et al. Efficient and quick inactivation of SARS coronavirus and other microbes exposed to the surfaces of some metal catalysts[J].Biomed Environ Sci, 2005, 18(3): 176-180. [48] HU K, GUAN W, BI Y, et al. Efficacy and safety of Lianhuaqingwen capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: a multicenter, prospective, randomized controlled trial[J]. Phytomedicine, 2020: 153242. [49] CLERCQ D E. New nucleoside analogues for the treatment of hemorrhagic fever virus infections[J]. Chem Asian J, 2019, 14(22): 3962-3968. [50] 澎湃新闻. 瑞德西韦获FDA正式授权, 成为全美首个获批新冠治疗药物[OL]. [2020-10-23]. https://www.thepaper.cn/newsDetail_forward_9679745[J]. The Paper. Radecivir has been officially approved by the U.S. Food and Drug Administration (FDA), making it the first drug to be approved in the United States [OL]. [2020-10-23]. https://www.thepaper.cn/newsDetail_forward_9679745 [51] LOTFI M, HAMBLIN M R, REZAEI N. COVID-19: transmission, prevention, and potential therapeutic opportunities[J]. Clin Chim Acta, 2020, 508: 254-266. [52] AL-TAWFIQ J A, MOMATTIN H, DID J, et al. Ribavirin and interferon therapy in patients infected with the Middle[J]. Int J Infect Dis, 2014.20: 42-46. [53] 曹依群.利巴韦林在严重急性呼吸综合征中的应用[J].第二军医大学学报, 2003, 24(7): 808-809. CAI Y Q, LI B C.Ribavirin in the treatment of severe acute respiratory syndrome[J]. J Second Mil Med Univ, 2003, 24(7): 808-809. [54] ZHANG Y, WANG S, WU Y, et al. Virus-free and live-cell visualizing SARS-CoV-2 cell entry for studies of neutralizing antibodies and compound inhibitors[J]. Small Methods, 2020: 2001031. [55] LIM M E, LEE Y, ZHANG Y, et al. Photodynamic inactivation of viruses using upconversion nanoparticles[J]. Biomaterials, 2012, 33(6): 1912-1920. [56] WIEHE A, O′BRIEN J M, SENGE M O. Trends and targets in antiviral phototherapy[J]. Photochem Photobiol Sci, 2019, 18(11): 2565-2612. [57] HAN Y, KRAÁL P. Computational design of ACE2-Based peptide inhibitors of SARS-CoV 2[J]. ACS Nano, 2020, 14(4): 5143-5147. [58] ZHOU Y, JIANG X, TONG T, et al. High antiviral activity of mercaptoethane sulfonate functionalized Te/BSA nanostars against arterivirus and coronavirus[J]. RSC Adv, 2020, 10(24): 14161-14169. [59] CAGNO V, ANDREOZZI P, ALICARNASSO M D, et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism[J]. Nat Mater, 2018, 17(2): 195-203. [60] PAPP I, SIEBEN C, LUDWIG K, et al. Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles[J]. Small, 2010, 6(24): 2900-2906. [61] CHAKRAVARTY M, VORA A. Nanotechnology-based antiviral therapeutics[J]. Drug Deliv Tr1(4): 20200105.ansl Res, 2020: 1-40. [62] TANG L, YIN Z, HU Y, et al. Controlling cytokine storm is vital in COVID-19[J]. Front Immunol, 2020, 11: 570993. [63] KUSUMOPUTRO S, TSENG S, TSE J, et al. Potential nanoparticle applications for prevention, diagnosis, and treatment of COVID-19[J]. View, 2020, 1(4): 20200105. [64] ZHOU Y, FU B, ZHENG X, et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients[J]. Natl Sci Rev, 2020, 7(6): 998-1002. [65] TANAKA T, NARAZAKI M, KISHIMOTO T. Immunotherapeutic implications of IL-6 blockade for cytokine storm[J]. Immunotherapy, 2016, 8(8): 959-970. [66] MA Q L, FAN Q, XU J L, et al. Calming cytokine storm in pneumonia by targeted delivery of TPCA-1 using platelet-derived extracellular vesicles[J]. Matter, 2020, 3(1): 287-301. [67] RAO L, XIA S, XU W, et al. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines[J]. Proc Natl Acad Sci USA, 2020, 117(44): 27141-27147. [68] SHI C, WANG X, WANG L, et al. A nanotrap improves survival in severe sepsis by attenuating hyperinflammation[J]. Nat Commun, 2020, 11(1): 3384. [69] PRAUCHNER C A. Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy[J]. Burns, 2017, 43(3): 471-485. [70] DORMONT F, BRUSINI R, CAILLEAU C, et al. Squalene-based multidrug nanoparticles for improved mitigation of uncontrolled inflammation in rodents[J]. Sci Adv, 2020, 6(23): eaaz5466. [71] QIN M, CAO Z, WEN J, et al. An antioxidant enzyme therapeutic for COVID-19[J]. Adv Mater, 2020, 32(43): 2004901. |