[1] QIN J, LI R, RAES J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65. [2] JANDHYALA S M. Role of the normal gut microbiota[J]. World J Gastroenterol, 2015, 21(29): 8787-803. [3] XIE G, ZHONG W, ZHENG X, et al. Chronic ethanol consumption alters mammalian gastrointestinal content metabolites[J]. J Proteome Res, 2013, 12(7): 3297-3306. [4] MOKHTARI Z, GIBSON D L, HEKMATDOOST A. Nonalcoholic fatty liver disease, the gut microbiome, and diet[J]. Adv Nutr, 2017, 8(2): 240-252. [5] ZHAO L. Genomics: the tale of our other genome[J]. Nature, 2010, 465(7300): 879-880. [6] VIVEROS A, CHAMORRO S, PIZARRO M, et al. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks[J]. Poult Sci, 2011, 90(3): 566-578. [7] FEI N, ZHAO L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice[J]. ISME J, 2013, 7(4) : 880-884. [8] EVERARD A, BELZER C, GEURTS L, et al. Cross- talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity[J]. Proc Natl Acad Sci USA, 2013, 110(22): 9066-9071. [9] LEROY T, LLOPIS M, LEPAGE P, et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice[J]. Gut, 2013, 62(12): 1787-1794 [10] KARLSSON F H, FAK F, NOOKAEW I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome[J]. Nat Commun, 2012, 3(4): 1245-1253. [11] YANO J M, YU K, DONALDSON G P, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161(2): 264-276. [12] CHEN G, YANG M, NONG S, et al. Microbial transformation of 20(S)-protopanaxadiol by Absidia corymbifera. Cytotoxic activity of the metabolites against human prostate cancer cells[J]. Fitoterapia, 2013, 84: 6-10. [13] WANG C, DU G, ZHANG Z, et al. Ginsenoside compound K, not Rb1, possesses potential chemopreventive activities in human colorectal cancer[J]. Int J Oncol, 2012, 40(6): 1970-1976. [14] HOLLISTER E B,GAO C,VERSALOVIC J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health[J]. Gastroenterology, 2014, 146(6): 1449-1458. [15] WANG C, DU G, ZHANG Z, et al. Ginsenoside compound K, not Rb1, possesses potential chemopreventive activities in human colorectal cancer[J]. Int J Oncol, 2012, 40(6): 1970-1976. [16] 王平, 罗佳, 李海舟, 等. 化学蛋白质组学鉴定天然产物作用靶标的研究进展[J]. 天然产物研究与开发, 2020, 32(1): 144-152. WANG P, LUO J, LI H Z, et al. Advances in identifying targets of natural products by chemical proteomics approaches[J]. Nat Prod Rep, 2020, 32(1): 144-152. [17] WANG Y, QIN S, JIA J, et al. Intestinal microbiota-associated metabolites: crucial factors in the effectiveness of herbal medicines and diet therapies[J]. Front Physiol, 2019, 10: 1343-1354. [18] 王鑫楠, 王维维, 辛贵忠, 等. 中草药调控肠道微生态组成与代谢的研究进展[J]. 中医药学报, 2019, 47(4): 117-124. WANG X N, WANG W W, XIN G H, et al. Research advances on the composition and metabolites of intestinal flora[J]. Acta Chinese Med Pharmacol, 2019, 47(4): 117-124. [19] ZHANG L, LI F, QIN W J, et al. Changes in intestinal microbiota affect metabolism of ginsenoside Re[J]. Biomed Chromatogr, 2018, 32(10): e4284-4321. [20] 严桐, 易婷, 郑婷婷. 人体肠道菌群对人参皂苷Rg3、白头翁皂苷D代谢转化的影响[J]. 中成药, 2018, 40(9): 1902-1909. YAN T, YI T, ZHENG T T, et al. Effects of human intestinal flora on the metabolic transformations of ginsenoside Rg3 and pulsatilla saponin D[J]. Chinese Trad Pat Med, 2018, 40(9): 1902-1909. [21] 崔小芳, 杜晨晖, 裴香萍, 等. 基于肠道菌群转化的酸枣仁质量标志物预测分析[J]. 中草药, 2019, 50(19): 4634-4642. CUI X F, DU C H, PEI X P, et al. Investigation and predictive analysis on Q-marker of ziziphi spinosae semen based on human intestinal microbiota transformation[J]. Chinese Trad Herb Drugs, 2019, 50(19): 4634-4642. [22] 李佳欣, 赵聪, 李璐, 等. 花旗泽仁主要活性成分在大鼠体外肠道菌群中代谢研究[J]. 辽宁中医药大学学报, 2019, 21(6): 58-65. LI J X, ZHAO C, LI L, et al. Study on the metabolism of the main active components of huaqizerenin the intestinal flora of rats[J]. J Liaoning Univ Trad Chinese Med, 2019, 21(6): 58-65. [23] ZHOU S, AUYEUNG K K, YIP K, et al. Stronger anti-obesity effect of white ginseng over red ginseng and the potential mechanisms involving chemically structural/compositional specificity to gut microbiota[J]. Phytomedicine, 2020, 74: 152761-152806. [24] WU L, KANG A, SHAN C, et al. LC-Q-TOF/MS-oriented systemic metabolism study of pedunculoside with in vitro and in vivo biotransformation[J]. Int J Oncol, 2019, 175: 112762-112771. [25] XUE Y, LIU J, FU R, et al. In vitro studies on the metabolism of saikogenins and the detection of their metabolites in authentic biosamples[J]. J Pharm Biomed Anal, 2019, 172: 295-301. [26] ZHOU P, YANG X, YANG Z, et al. Akebia saponin D regulates the metabolome and intestinal microbiota in high fat diet-induced hyperlipidemic rats[J]. Molecules, 2019, 24(7): 1268-1289. [27] 韩铭鑫, 李方彤, 张琰, 等. 稀有原人参二醇型皂苷的人肠道菌群生物转化[J]. 高等学校化学学报, 2019, 40(7): 1390-1396. HAN M X, LI F T, ZHANG Y, et al. Biotransformation of rare protopanaxadiol saponin by human intestinal microflora[J]. Chem J Chinese Univ, 2019, 40(7): 1390-1396. [28] 张琰, 李方彤, 韩铭鑫, 等. 通过RRLC Q TOF MS和原人参三醇型皂苷在人肠道菌群中的代谢产物[J]. 质谱学报, 2020, 41(1): 66-75. ZHANG Y, LI F T, HAN M X, et al. Analysis of metabolites of protopanaxatriol saponinsin human intestinal flora by RRLC-Q-TOF MS and UPLC-QQQ MS[J]. J Chinese Mass Spectrom Soc, 2020, 41(1): 66-75. [29] 田雨, 丁艳平, 邵宝平, 等. 黄芪等药食同源类中药作为功能性食品与肠道菌群的相互作用[J]. 中国中药杂志, 2020, 45(11): 2486-2492. TIAN Y, DING Y P, SHAO B P, et al. Interaction between homologous functional food Astragali radix and intestinal flora[J]. China J Chinese Mater Med , 2020, 45(11): 2486-2492. [30] CHEN Z, DING L. Identification of major parent compounds and metabolites in bile, plasma and urine of rats after oral administration of Radix Scutellariae extract by UFLC-IT-TOF/MS[J]. J Chinese Pharm Sci, 2013, 22(4): 319-328. [31] XU X, LI X, LIANG X. Application of ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry in identification of three isoflavone glycosides and their corresponding metabolites[J]. Rapid Commun Mass Spectrom, 2018, 32(3): 262-268. [32] DU L, QIAN D, SHANG E,UPLC-Q-TOF/MS-based screening and identification of the main flavonoids and their metabolites in rat bile, urine and feces after oral administration of Scutellaria baicalensis extract[J]. J Ethnopharmacol, 2015, 169: 156-162. [33] FENG X, LI Y, GUANG C, et al. Characterization of the in vivo and in vitro metabolites of linarin in rat biosamples and intestinal flora using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry[J]. Molecules (Basel, Switz), 2018, 23(9): 2140-2154. [34] JIN X, LU Y, CHEN S, et al. UPLC-MS identification and anticomplement activity of the metabolites of Sophora tonkinensis flavonoids treated with human intestinal bacteria[J]. J Pharm Biomed Anal, 2020, 184: 113176-113196. [35] TIAN X, XU Z, CHEN M, et al. Simultaneous determination of eight bioactive compounds by LC-MS/MS and its application to the pharmacokinetics, liver first-pass effect, liver and brain distribution of orally administrated Gouteng-Baitouweng (GB) in rats[J]. J Chromatogr B, 2018, 1084: 122-131. [36] GUO X, XIE Y, LIAN S, et al. A sensitive HPLC-MS/MS method for the simultaneous determination of anemoside B4, anemoside A3 and 23-hydroxybetulinic acid: application to the pharmacokinetics and liver distribution of Pulsatilla chinensis saponins[J]. Biomed Chromatogr, 2018, 32(3): e4124-e4154. [37] WANG X, YU N, PENG H, et al. The profiling of bioactives in Akebia trifoliata pericarp and metabolites, bioavailability and in vivo anti-inflammatory activities in DSS-induced colitis mice[J]. Food Funct, 2019, 10(7): 3977-3991. [38] WANG Y, QIAN T, SHOU J, et al. Gut microbiota-mediated personalized treatment of hyperlipidemia using berberine[J]. Theranostics, 2017, 7(9): 2443-2451. [39] XIAO J, CHEN H, KANG D, et al. Qualitatively and quantitatively investigating the regulation of intestinal microbiota on the metabolism of panax notoginseng saponins[J]. J Ethnopharmacol 2016, 194: 324-336. [40] ZHAO W, XIAO M, YANG J, et al. The combination of Ilexhainanoside D and ilexsaponin A1 reduces liver inflammation and improves intestinal barrier function in mice with high-fat diet-induced non-alcoholic fatty liver disease[J]. Phytomedicine, 2019, 63: 153039-153048. [41] CHEN S, LI X, LIU L, et al. Ophiopogonin D alleviates high-fat diet-induced metabolic syndrome and changes the structure of gut microbiota in mice[J]. FASEB J, 2018, 32(3): 1139-1153. [42] CHEN J, WANG Y, ZHU T, et al. Beneficial regulatory effects of polymethoxyflavone-rich fraction from ougan (Citrus reticulata cv. Suavissima) fruit on gut microbiota and identification of its intestinal metabolites in mice[J]. Antioxidants, 2020, 9(9): 831-849. [43] LU J F, ZHU M Q, ZHANG H, et al. Neohesperidin attenuates obesity by altering the composition of the gut microbiota in high-fat diet-fed mice[J]. FASEB J, 2020, 34(9): 12053-12071. [44] LIU S, ZHANG Z, HAILEMARIAM S, et al. Biochanin A inhibits ruminal nitrogen-metabolizing bacteria and alleviates the decomposition of amino acids and urea in vitro[J]. Animals, 2020, 10(3): 368-380. [45] ZHANG X, ZHAO Y, ZHANG M, et al. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats[J]. PLoS One, 2012, 7(8): e42529- e42541. [46] LI H, FANG Q, NIE Q, et al. Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on type 2 diabetic rats via gut microbiota and metabolism alteration[J]. J Agric Food Chem, 2020, 68(37): 10015-10028. [47] SHEN H, GAO X, LI T, et al. Ginseng polysaccharides enhanced ginsenoside Rb1 and microbial metabolites exposure through enhancing intestinal absorption and affecting gut microbial metabolism[J]. J Ethnopharmacol, 2018, 216: 47-56. [48] GAO B, WANG R, PENG Y. Effects of a homogeneous polysaccharide from Sijunzi decoction on human intestinal microbes and short chain fatty acids in vitro[J]. J Ethnopharmacol, 2018, 224: 465-473. [49] LI C, NIU Z, ZOU M, et al. Probiotics, prebiotics, and synbiotics regulate the intestinal microbiota differentially and restore the relative abundance of specific gut microorganisms[J]. J Dairy Sci, 2020, 103(7): 5816-5829. [50] SOOKOIAN S, SALATINO A, CASTA O G O, et al. Intrahepatic bacterial metataxonomic signature in non-alcoholic fatty liver disease[J]. Gut, 2020, 69(8): 1483-1491. [51] ZHU W, ZHOU S, LIU J, et al. Prebiotic, immuno-stimulating and gut microbiota-modulating effects of lycium barbarum polysaccharide[J]. Biomed Pharmacother, 2020, 121: 109591-109597. [52] ZHANG Y, TANG K, DENG Y, et al. Effects of shenling baizhu powder herbal formula on intestinal microbiota in high-fat diet-induced NAFLD rats[J]. Biomed Pharmacother, 2018, 102: 1025-1036. |