[1] MENDES A C, STEPHANSEN K, CHRONAKIS I S. Electrospinning of food proteins and polysaccharides[J]. Food Hydrocolloid, 2017, 68: 53-68. [2] HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Compos Sci Technol, 2003, 63(15): 2223-2253. [3] TAM N, OGUZ S, AYDOGDU A, et al. Influence of solution properties and pH on the fabrication of electrospun lentil flour/HPMC blend nanofibers[J]. Food Res Int, 2017, 102:616-624. [4] KHODADADI M, ALIJANI S, MONTAZERI M, et al. Recent advances in electrospun nanofiber-mediated drug delivery strategies for localized cancer chemotherapy[J]. J Biomed Mater Res A, 2020, 108(7): 1444-1458. [5] ZHANG C, WEN J H, YAN J, et al. In situ growth induction of the corneal stroma cells using uniaxially aligned composite fibrous scaffolds[J]. RSC Adv, 2015, 5: 12123-12130. [6] CAO H, LIU T, CHEW S Y. The application of nanofibrous scaffolds in neural tissue engineering[J]. Adv Drug Deliv Rev, 2009, 61: 1055-1064. [7] LEE S J, LIU J, OH S H, et al. Development of a composite vascular scaffolding system that withstands physiological vascular conditions[J]. Biomaterials, 2008, 29: 2891-2898. [8] FEREYDOUNI N, DARROUDI M, MOVAFFAGH J, et al. Curcumin nanofibers for the purpose of wound healing[J]. J Cell Physiol, 2019, 234: 5537-5554. [9] RADWAN-PRAGŁOWSKA J, JANUS Ł, PIATKOWSKI M, et al. 3D hierarchical, nanostructured chitosan/PLA/HA scaffolds doped with TiO2/Au/Pt NPs with tunable properties for guided bone tissue engineering[J]. Polymers (Basel), 2020, 12: 792. [10] DAGHRERY A, AYTAC Z, DUBEY N, et al. Electrospinning of dexamethasone/cyclodextrin inclusion complex polymer fibers for dental pulp therapy[J]. Colloid Surf B, 2020, 191: 111011. [11] CELEBIOGLU A, UYAR T. Development of ferulic acid/cyclodextrin inclusion complex nanofibers for fast-dissolving drug delivery system[J]. Int J Pharm, 2020, 584: 119395. [12] WEI Q, WEI A. Functional nanofibers for drug delivery applications[M]//Functional Nanofibers and their Applications. Woodhead Publishing, 2012: 153-170. [13] AYTAC Z, YILDIZ Z I, KAYACISENIRMAK F, et al. Electrospinning of cdextrin/linalool-inclusion complex nanofibers: fast-dissolving nanofibrous web with prolonged release and antibacterial activity [J]. Food Chem, 2017, 231: 192-201. [14] ROSTAMI M, GHORBANI M, MOHAMMADI M A, et al. Development of resveratrol loaded chitosan-gellan nanofiber as a novel gastrointestinal delivery system[J]. Int J Biol Macromol, 2019, 135: 698-705. [15] 陈曼, 何明, 郭妍婷, 等. 静电纺丝羽毛角蛋白纳米纤维膜的交联改性研究[J]. 化工新型材料, 2019, 47(1): 160-165. CHEN M, HE M, GUO Y T, et al. Study on crosslinking modification of feather keratin nanofiber membrane by electrospinning[J]. New Chem Mater, 2019, 47(1): 160-165. [16] LEE H, NOH K, LEE S C, et al. Human hair keratin and its-based biomaterials for biomedical applications[J]. Tissue Eng Regen Med, 2014, 11(4): 255-265. [17] AYTAC Z, YILDIZ Z I, KAYACISENIRMAK F, et al. Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: fast-dissolving nanofibrous web with prolonged release and antibacterial activity[J]. Food Chem, 2017, 231: 192-201. [18] TAEPAIBOON P, RUNGSARDTHONG U, SUPAPHOL P. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E[J]. Eur J Pharm Biopharm, 2007, 67(2): 387-397. [19] YE P W, WEI S Y, LUO C H, et al. Long-term effect against methicillin-resistant Staphylococcus aureus of emodin released from coaxial electrospinning nanofiber membranes with a biphasic profile[J]. Biomolecules, 2020, 10(3): 362. [20] ZHANG X, HAN L, SUN Q, et al. Controlled release of resveratrol and xanthohumol via coaxial electrospinning fibers[J]. J Biomat Sci-Polym E, 2020, 31(4): 456-471. [21] ROSTAMI M, GHORBANI M, MOHAMMADI M A, et al. Development of resveratrol loaded chitosan-gellan nanofiber as a novel gastrointestinal delivery system[J]. Int J Biol Macromol, 2019, 135: 698-705. [22] WANG B, WANG Y, YIN T, et al. Applications of electrospinning technique in drug delivery[J]. Chem Eng Commun, 2010, 197(10): 1315-1338. [23] SANDERS E H, KLOEFKORN R, BOWLIN G L, et al. Two-phase electrospinning from a single electrified jet: microencapsulation of aqueous reservoirs in poly(ethylene-co-vinyl acetate) fibers[J]. Macromolecules, 2015, 36(11): 3803-3805. [24] YE P W, WEI S Y, LUO C H, et al. Long-term effect against methicillin-resistant Staphylococcus aureus of emodin released from coaxial electrospinning nanofiber membranes with a biphasic profile[J]. Biomolecules, 2020, 10(3): 362. [25] OVINGTON L G. Advances in wound dressings[J]. Clin Dermatol, 2007, 25(1): 33-38. [26] SIMOES D, MIGUEL S P, RIBEIRO M J, et al. Recent advances on antimicrobial wound dressing: a review[J]. Eur J Pharm Biopharm, 2018, 127: 130-141. [27] CACCIOTTI I, CIOCCI M, GIOVANNI E D, et al. Hydrogen sulfide-releasing fibrous membranes: potential patches for stimulating human stem cells proliferation and viability under oxidative stress[J]. Int J Mol Sci, 2018, 19(8): 2368. [28] ZAHEDI P, REZAEIAN I, RANAEISIADAT S, et al. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages[J]. Polym Adv Technol, 2009, 21(2): 77-95. [29] MELE E. Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings[J]. J Mater Chem B, 2016, 4(28): 4801-4812. [30] ZHANG Q H, OH J H, PARK C H, et al. Effects of dimethyloxalylglycine-embedded poly(ε-caprolactone) fiber meshes on wound healing in diabetic rats[J]. ACS Appl Mater Interfaces, 2017, 9(9): 7950-7963. [31] ALBERTI T, COELHO D S, VOYTENA A P, et al. Nanotechnology: a promising tool towards wound healing[J]. Curr Pharm Des, 2017, 23(24): 3515-3528. [32] ROMEROCERECERO O, ZAMILPAALVAREZ A, RAMOSMORA A, et al. Effect on the wound healing process and in vitro cell proliferation by the medicinal Mexican plant Ageratina pichinchensis[J]. Planta Med, 2011, 77(10): 979-983. [33] ALBAYATY F H, ABDULLA M A, HASSAN M I, et al. Effect of Andrographis paniculata leaf extract on wound healing in rats[J]. Nat Prod Res, 2011, 26(5): 423-429. [34] NICOLAUS C, JUNGHANNS S, HARTMANN A, et al. In vitro studies to evaluate the wound healing properties of Calendula officinalis extracts[J]. J Ethnopharmacol, 2017, 196: 94-103. [35] ABDEL-MOHSEN A M, FRANKOVA J, ABDEL-RAHMAN M, et al. Chitosan-glucan complex hollow fibers reinforced collagen wound dressing embedded with aloe vera. II. multifunctional properties to promote cutaneous wound healing[J]. Int J Pharm, 2020, 582: 119349. [36] JOSHI A, JOSHI V K, PANDEY D, et al. Systematic investigation of ethanolic extract from Leea macrophylla: implications in wound healing[J]. J Ethnopharmacol, 2016, 191(191): 95-106. [37] LIU J X, DONG W H, MOU X J, et al. In situ electrospun zein/thyme essential oil based membranes as effective antibacterial wound dressing[J]. ACS Appl Bio Mater, 2020, 3(1): 302-307. [38] FAN Z L, WANG Z Y, ZUO L L, et al. Protective effect of anthocyanins from lingonberry on radiation-induced damages[J]. Int J Environ Res Public Health, 2012, 9(12): 4732-4743. [39] PAKOLPAK IL A, OSMAN B, ZER E T, et al. Halochromic composite nanofibrous mat for wound healing monitoring[J]. Mater Res Express, 2020, 6(12): 1250c3. [40] WANG F D, HU S, JIA Q X, et al. Advances in electrospinning of natural biomaterials for wound dressing[J]. J Nanomater, 2020, 2020: 8719859. [41] GOLCHIN A, NOURANI M R. Effects of bilayer nanofibrillar scaffolds containing epidermal growth factor on full-thickness wound healing[J]. Polym Adv Technol, 2020, 31: 2443-2452. [42] JONES V, GREY J E, HARDING K G. Wound dressings[J]. Br Med J, 2006, 332(7544): 777-780. [43] NAJAFIASL M, OSFOURI S, AZIN R, et al. Alginate-based electrospun core/shell nanofibers containing dexpanthenol performed well in-vitro: a candidate for wound dressing[J]. J Drug Delivery Sci Technol, 2020, 57: 101708. [44] BRETT D. A review of collagen and collagen-based wound dressings[J]. Wounds, 2008, 20(12): 347-356. [45] RAMANATHAN G, SOBHANADHAS L L S, JEYAKUMAR G F S, et al. Fabrication of biohybrid cellulose acetate-collagen bilayer matrices as nanofibrous spongy dressing material for wound-healing application[J]. Biomacromolecules, 2020, 21(6): 2512-2524. [46] KULKARNI A S, GURAV D D, KHAN A, et al. Curcumin loaded nanofibrous mats for wound healing application[J]. Colloid Surf B, 2020, 189: 110885. [47] YE J P, GONG J S, SU C, et al. Fabrication and characterization of high molecular keratin based nanofibrous membranes for wound healing[J]. Colloid Surf B, 2020, 194: 111158. [48] AMAJUOYI J N, ILOMUANYA M O, ASANTEWAA-OSEI Y, et al. Development of electrospun keratin/coenzyme Q10/poly vinyl alcohol nanofibrous scaffold containing mupirocin as potential dressing for infected wounds[J]. Future J Pharm Sci, 2020, 6(1): 1-13. [49] FANG Y, ZHU X, WANG N, et al. Biodegradable core-shell electrospun nanofibers based on PLA and γ-PGA for wound healing[J]. Eur Polym J, 2019, 116: 30-37. [50] JAGANATHAN S K, MANI M P, RATHANASAMY R, et al. Fabrication and characterization of tailor-made novel electrospun fibrous polyurethane scaffolds decorated with propolis and neem oil for tissue engineering applications[J]. J Ind Text, 2020, 49(9): 1178-1197. [51] 王笑, 王路, 王振宇. 微生物多糖透明质酸生物医用水凝胶研究[J]. 卫生研究, 2019, 48(4): 683-688. WANG X, WANG L, WANG Z Y. Study on microbial polysaccharide hyaluronic acid hydrogel for bio-medical applications[J]. J Hydiene Res, 2019, 48(4): 683-688. [52] 黄河, 刘颖, 谢黎明. 纳米银的血液相容性及作用机制研究进展[J]. 科学通报, 2015, 60(36): 49-60. HUANG H, LIU Y, XIE L M. Research progress on blood compatibility and mechanism of nano-silver[J]. Chinese Sci Bull, 2015, 60(36): 49-60. [53] AGARWAL S, WENDORFF J H, GREINER A. Progress in the field of electrospinning for tissue engineering applications[J]. Adv Mater, 2009, 21(32/33): 3343-3351. [54] EKAPUTRA A K, ZHOU Y, COOL S M, et al. Composite electrospun scaffolds for engineering tubular bone grafts[J]. Tissue Eng Part A, 2009, 15(12): 3779-3788. [55] JUNKA R, YU X J. Polymeric nanofibrous scaffolds laden with cell-derived extracellular matrix for bone regeneration[J]. Mater Sci Eng C, 2020, 113: 110981. [56] WANG S, ZHANG Y, YIN G, et al. Fabrication of a composite vascular scaffold using electrospinning technology[J]. Mater Sci Eng C, 2010, 30(5): 670-676. [57] ELLIOTT M B, GINN B, FUKUNISHI T, et al. Regenerative and durable small-diameter graft as an arterial conduit[J]. Proc Natl Acad Sci USA, 2019, 116(26): 12710-12719. [58] PHU D, WRAY L S, WARREN R V, et al. Effect of substrate composition and alignment on corneal cell phenotype[J]. Tissue Eng Part A, 2011, 17(5/6): 799-807. [59] YE J, SHI X, CHEN X, et al. Chitosan-modified, collagen-based biomimetic nanofibrous membranes as selective cell adhering wound dressings in the treatment of chemically burned corneas[J]. J Mater Chem B, 2014, 2(27): 4226-4236. [60] LI W, GUO Y, WANG H, et al. Electrospun nanofibers immobilized with collagen for neural stem cells culture[J]. J Mater Sci-Mater Med, 2008, 19(2): 847-854. [61] LI S, WU H, HU X, et al. Preparation of electrospun PLGA-silk fibroin nanofibers-based nerve conduits and evaluation in vivo[J]. Artif Cell Blood Substit Subbiotechnol, 2012, 40(1/2): 171-178. [62] 王笑, 王路, 王振宇. 高强度天然大分子凝胶制备策略及生物医用[J]. 卫生研究, 2019, 48(5): 864-868. WANG X, WANG L, WANG Z Y. Preparation strategy and biomedical applications of natural macromolecular gels with high strength[J]. J Hydiene Res, 2019, 48(5): 864-868. [63] VACCARO A R. The role of osteoconductive scaffold in synthetic bone graft[J]. Orthopedics, 2002, 25(5 suppl): s571-s578. [64] ARKUDAS A, TJIAWI J, SAUMWEBER A, et al. Evaluation of blood vessel ingrowth in fibrin gel subject to type and concentration of growth factors[J]. J Cell Mol Med, 2009, 13(9a): 2864-2874. [65] RODRIGUEZ I A, MCCOOL J M, BOWLIN G L. 9-Functional nanofibers for tissue engineering applications[M]//Functional nanofibers and their applications. Woodhead Publishing. 2012: 171-196. [66] WU T, DING M, SHI C, et al. Resorbable polymer electrospun nanofibers: history, shapes and application for tissue engineering[J]. Chinese Chem Lett, 2020, 31(3): 617-625. [67] YANG X, BHATNAGAR R S, LI S, et al. Biomimetic collagen scaffolds for human bone cell growth and differentiation[J]. Tissue Eng, 2004, 10(7): 1148-1159. [68] KANUNGO B P, SILVA E C, VAN VLIET K J, et al. Characterization of mineralized collagen glycosaminoglycan scaffolds for bone regeneration[J]. Acta Biomater, 2008, 4(3): 490-503. [69] KIM S E, HEO D N, LEE J B, et al. Electrospun gelatin/polyurethane blended nanofibers for wound healing[J]. Biomed Mater, 2009, 4(4): 044106. [70] CESUR S, OKTAR F N, EKREN N, et al. Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application[J]. J Aust Ceram Soc, 2020, 56(2): 533-543. [71] TSAI S W, HUANG S S, YU W X, et al. Collagen scaffolds containing hydroxyapatite-CaO fiber fragments for bone tissue engineering[J]. Polymers-Basel, 2020, 12(5): 1174. [72] JUNKA R, YU X J. Polymeric nanofibrous scaffolds laden with cell-derived extracellular matrix for bone regeneration[J]. Mater Sci Eng C, 2020, 113: 110981. [73] COLLINOSDOBY P. Role of vascular endothelial cells in bone biology[J]. J Cell Biochem, 1994, 55(3):304-309. [74] WANG Q, ZHANG Y, LI B, et al. Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin-nanohydroxyapatite scaffold for vascularized bone regeneration[J]. J Mater Chem B, 2017, 5(33): 6963-6972. [75] RATHER H A, PATEL R, YADAV U C S, et al. Dual drug-delivering polycaprolactone-collagen scaffold to induce early osteogenic differentiation and coupled angiogenesis[J]. Biomed Mater, 2020, 15(4): 045008. [76] RATHER H, JHALA D, VASITA R, et al. Dual functional approaches for osteogenesis coupled angiogenesis in bone tissue engineering[J]. Mater Sci Eng C, 2019, 103: 109761. [77] MALEK A M, ALPER S L, IZUMO S, et al. Hemodynamic shear stress and its role in atherosclerosis[J]. J Am Med Assoc, 1999, 282(21): 2035-2042. [78] GLAGOV S, ZARINS C K, MASAWA N, et al. Mechanical functional role of non-atherosclerotic intimal thickening[J]. Front Med Biol Eng, 1993, 5(1): 37-43. [79] MATTHEWS J A, WNEK G E, SIMPSON D G, et al. Electrospinning of collagen nanofibers[J]. Biomacromolecules, 2002, 3(2): 232-238. [80] WHITE J V, MAZZACCO S L. Formation and growth of aortic aneurysms induced by adventitial elastolysis[J]. Ann N Y Acad Sci, 1996, 800(1): 97-120. [81] BOLAND E D, MATTHEWS J A, PAWLOWSKI K J, et al. Electrospinning collagen and elastin: preliminary vascular tissue engineering[J]. Front Biosci, 2004, 9(2): 1422-1432. [82] LEE S J, YOO J J, LIM G, et al. In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application[J]. J Biomed Mater Res A, 2007, 83(4): 999-1008. [83] ZHANG W J, CHEN Z, MA S J, et al. Cistanche polysaccharide (CDPS)/polylactic acid (PLA) scaffolds based coaxial electrospinning for vascular tissue engineering[J]. Int J Polym Mater Polym Biomater, 2016, 65(1): 38-46. [84] ORTEGA I, SEFAT F, DESHPANDE P, et al. Combination of microstereolithography and electrospinning to produce membranes equipped with niches for corneal regeneration[J]. J Visualized Exp, 2014, 91: 51826. [85] ACUN A, HASIRCI V. Construction of a collagen-based, split-thickness cornea substitute[J]. J Biomater Sci-Polym E, 2014, 25(11): 1110-1132. [86] BARADARANRAFII A, BIAZAR E, HEIDARIKESHEL S, et al. Cellular response of limbal stem cells on PHBV/gelatin nanofibrous scaffold for ocular epithelial regeneration[J]. Int J Polym Mater Polym Biomater, 2015, 64(17): 879-887. [87] FAWCETT J W, ASHER R A. The glial scar and central nervous system repair[J]. Brain Res Bull, 1999, 49(6): 377-391. [88] KRYCH A J, ROONEY G E, CHEN B, et al. Relationship between scaffold channel diameter and number of regenerating axons in the transected rat spinal cord[J]. Acta Biomater, 2009, 5(7): 2551-2559. [89] YANG F, XU C Y, KOTAKI M, et al. Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold[J]. J Biomater Sci-Polym E, 2004, 15(12): 1483-1497. [90] SCHNELL E, KLINKHAMMER K, BALZER S, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend[J]. Biomaterials, 2007, 28(19): 3012-3025. [91] WANG W, ITOH S, MATSUDA A, et al. Influences of mechanical properties and permeability on chitosan nano/microfiber mesh tubes as a scaffold for nerve regeneration[J]. J Biomed Mater Res A, 2008, 84(2): 557-566. [92] DOOSTMOHAMMADI M, FOROOTANFAR H, RAMAKRISHNA S, et al. Regenerative medicine and drug delivery: progress via electrospun biomaterials[J]. Mater Sci Eng C, 2020, 109: 110521. |