[1] DUNETZ J R, MAGANO J, WEISENBURGER G A. Process development for ABT-472, a benzimidazole PARP inhibitor[J]. Org Process Res Dev, 2016, 20: 140-177. [2] REDDY N V, KUMAR P S, REDDY P S, et al. Synthesis of unsymmetrical phenylurea derivatives via oxidative cross coupling of aryl formamides with amines under metal-free conditions[J]. New J Chem, 2015, 39: 805-809. [3] NASROLLAHZADEH M N, MOTAHHARIFARA M, AGHBOLAGH M, et al. Recent advances in N-formylation of amines and nitroarenes using efficient (nano)catalysts in eco-friendly media[J]. Green Chem, 2019, 21(19): 5144-5167. [4] PATHARE S P, SAWANT R V, AKAMANCHI K G. Sulfated tungstate catalyzed highly accelerated N-formylation[J]. Tetrahedron Lett, 2012, 53: 3259-3263. [5] YANG X J, ZHANG Y S. Melamine trisulfonic acid-catalyzed N-formylation of amines under solvent-free conditions[J]. Res Chem Intermed, 2013, 39: 2843-2848. [6] KARARMI B, FARAHI M, PAM F. A green protocol for the N-formylation of amines using molybdate sulfuric acid as a reusable solid catalyst[J]. Tetrahedron Lett, 2014, 55: 6292-6296. [7] HABIBI D, NASROLLAHZADEH M, SAHEBEKHTIARI H. Green synthesis of formamides using the natrolite zeolite as a as natural, efficient and recyclable catalyst[J]. J Mol Catal A Chem, 2013, 378: 148-155. [8] TAJBAKHSH M, ALINEZHAD H, NASROLLAHZADEH M, et al.Preparation, characterization and application of nanosized CuO/HZSM-5 as an efficient and heterogeneous catalyst for the N-formylation of amines at room temperature[J]. J Colloid Interface Sci, 2016, 471: 37-47. [9] KOOTI M, NASIRI E. Phosphotungstic acid supported on silica-coated CoFe2O4 nanoparticles: an efficient and magnetically-recoverable catalyst for N-formylation of amines under solvent-free conditions[J]. J Mol Catal A, 2015, 406: 168-177. [10] HABIBI D, HEYDARI S, AFSHARFARNIA M. A capable cobalt nano-catalyst for the N-formylation of various amines and its biological activity studies[J]. Appl Organomet Chem, 2017, 31: e3874. [11] Marjani P A, HOSSEINI S A, SHOKRI Z, et al. Co3O4 nanoparticles prepared by oxidative precipitation method: an efficient and reusable heterogeneous catalyst for N-formylation of amines[J]. Res Chem Intermed, 2017, 43: 413-422. [12] BANDGAR B, KINKAR S, CHOBE S, et al. Clean and green approach for N-formylation of amines using formic acid under neat reaction condition[J]. Arch Appl Sci Res, 2011, 3: 246-251. [13] WANG X, MENG Q, Gao L, et al. Recent progress in hydrogen production from formic acid decomposition[J]. Int J Hydrogen Energy, 2018, 43(14): 7055-7071. [14] PRATAP T V, BASKARAN S. Direct conversion of aryl nitro compounds to formanilides under catalytic transfer hydrogenation conditions[J]. Tetrahedron Lett, 2001, 42: 1983-1985. [15] REDDY P G, BASKARAN S. A chemoselective method for the reductive N-formylation of aryl azides under catalytic transfer hydrogenation conditions[J]. Tetrahedron Lett, 2002, 43: 1919-1922. [16] KARIMI B, MANSOURI F, VALI H. A highly water-dispersible/magnetically separable palladium catalyst: selective transfer hydrogenation or direct reductive N-formylation of nitroarenes in water[J]. ChemPlusChem, 2015, 80: 1750-1759. [17] LOU X B, HE L, QIAN Y, et al. Highly chemo- and regioselective transfer reduction of aromatic nitro compounds using ammonium formate catalyzed by supported gold nanoparticles[J]. Adv Synth Catal, 2011, 353: 281-286. [18] LI M, HU L, CAO X, et al. Direct hydrogenation of nitroaromatics and one-pot amidation with carboxylic acids over platinum nanowires[J]. Chem Eur J, 2011, 17: 2763-2768. [19] KUMAR V, KUMAR M, SHARMA S, et al. Highly selective direct reductive amidation of nitroarenes with carboxylic acids using cobalt(II) phthalocyanine/PMHS[J]. RSC Adv, 2014, 4: 11826-11830. [20] DONG X S, WANG Z Z, DUAN Y A, et al. One-pot selective N-formylation of nitroarenes to formamides catalyzed by core-shell structured cobalt nanoparticles[J]. Chem Commun, 2018, 54: 8913-8916. [21] ZHANG Y C, CAO P W, ZHANG H Y, et al. Cobalt nanoparticles anchoring on nitrogen doped carbon with excellent performances for transfer hydrogenation of nitrocompounds to primary amines and N-substituted formamides with formic acid[J]. Catal Commun, 2019, 129: 105747. [22] BAIG R B N, VERMA S, NADAGOUDA M N, et al. Photoactive bimetallic framework for direct aminoformylation of nitroarenes[J]. Green Chem, 2016, 18: 1019-1022. [23] KAKROUDI M A, KAZEMI F, KABOUDIN B. β-cyclodextrin-TiO2: green nest for reduction of nitroaromatic compounds[J]. RSC Adv, 2014, 4: 52762-52769. [24] LI J L, LI C Y, FENG S Q, et al. Atomically dispersed Zn-Nx sites in N-doped carbon for reductive N-formylation of nitroarenes with formic acid[J]. ChemCatChem, 2020, 12: 1546-1550. [25] GARKOTI C, SHABIR J, MOZUMDAR S. Imidazolium based ionic liquid supported on Fe3O4@SiO2 nanoparticle as an efficient Pd-Catalyzed N-formylation of amines with N,N-dimethylformamide[J]. Chinese J Org Chem, 2019, 39: 1109-1115. [26] TUMMA H, NAGARAJU N, REDDY K V. A facile method for the N-formylation of primary and secondary amines by liquid phase oxidation of methanol in the presence of hydrogen peroxide over basic copper hydroxyl salts[J]. J Mol Catal A, 2009, 310(1/2): 121-129. |