应用化学 ›› 2021, Vol. 38 ›› Issue (11): 1405-1422.DOI: 10.19894/j.issn.1000-0518.210137
刘林昌, 郭亚君, 朱红林, 马静静, 李忠义, 水淼, 郑岳青*
收稿日期:
2021-03-22
接受日期:
2021-06-08
出版日期:
2021-11-01
发布日期:
2022-01-01
通讯作者:
*E-mail:zhengyueqing@nbu.edu.com
基金资助:
LIU Lin-Chang, GUO Ya-Jun, ZHU Hong-Lin, MA Jing-Jing, LI Zhong-Yi, SHUI Miao, ZHENG Yue-Qing*
Received:
2021-03-22
Accepted:
2021-06-08
Published:
2021-11-01
Online:
2022-01-01
Supported by:
摘要: 氢(H2)作为一种可再生、零排放和地球资源丰富的能源,被认为是解决当今能源危机和环境问题的有效方案之一。 然而氢气易燃、易爆、不易储存及运输困难等缺点严重制约了其在实际中的应用,所以实现氢能的安全高效存储及可控释放是亟需解决的关键问题。 氨硼烷(NH3BH3,Ammonia Borane,简称AB)具有含氢量高、室温稳定、无污染、无毒性和水溶性良好等优点,在室温下与水几乎不发生反应,然而当有催化剂参与时可水解释放出氢气,因此AB被认为是一种理想的氢能材料。 然而,缺乏廉价、稳定、环境友好和易分离回收的高性能催化剂严重阻碍了氨硼烷水解制氢技术的发展和应用。 因而,设计和构筑氨硼烷水解用的廉价高性能催化剂是氨硼烷基氢能应用所面临的严峻挑战。 目前,关于氨硼烷水解制氢用的催化剂研究非常活跃,业已成为氢能研究领域的热点方向之一。 迄今,氨硼烷水解产氢所用的异相催化剂主要分为非负载型和负载型两大类,其中负载型超细纳米催化剂尤其引起人们的高度重视和广泛兴趣,其研究呈现出迅猛的发展势头。 本文就碳基材料、层状双金属氢氧化物(LDHs)、氧化物、金属有机框架(MOFs)和有机高分子材料等为载体的负载型超细纳米催化剂的制备及其催化氨硼烷水解产氢的性能、机理等最新研究进展进行了综述,而后对该研究中尚待解决的问题进行了总结,并对下一步的研究提出展望。
中图分类号:
刘林昌, 郭亚君, 朱红林, 马静静, 李忠义, 水淼, 郑岳青. 负载型超细纳米材料催化氨硼烷水解制氢的研究进展[J]. 应用化学, 2021, 38(11): 1405-1422.
LIU Lin-Chang, GUO Ya-Jun, ZHU Hong-Lin, MA Jing-Jing, LI Zhong-Yi, SHUI Miao, ZHENG Yue-Qing. Research Progress on Supported Ultrafine Nano-catalysts for Hydrolytic Dehydrogenation of Ammonia Borane[J]. Chinese Journal of Applied Chemistry, 2021, 38(11): 1405-1422.
[1] ORLY L, JORGE D, GAL H, et al. Diatoms: a fossil fuel of the future[J]. Trends Biotechnol, 2014, 32(3): 117-124. [2] SCOTT V, HASZELDINE R S, TETT S F B, et al. Fossil fuels in a trillion tonne world[J]. Nat Clim Change, 2015, 5: 419-423. [3] TURNER J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974. [4] ZHOU Q Q, WANG J Y, GUO F Y, et al. Self-supported bimetallic phosphide-carbon nanostructures derived from metal-organic frameworks as bifunctional catalysts for highly efficient water splitting[J]. Electrochim Acta, 2019, 318: 244-251. [5] ZHANG M Y, XU W, LI T T, et al. In situ growth of tetrametallic FeCoMnNi-MOF-74 on nickel foam as efficient bifunctional electrocatalysts for the evolution reaction of oxygen and hydrogen[J]. Inorg Chem, 2020, 59(20): 15467-15477. [6] WANG Y R, CHEN X W, ZHANG H Y, et al. Heterostructures built in metal hydrides for advanced hydrogen storage reversibility[J]. Adv Mater, 2020, 32: 2002647. [7] LUO Y M, SUN L X, XU F, et al. Improved hydrogen storage of LiBH4 and NH3BH3 by catalysts[J]. J Mater Chem A, 2018, 6: 7293-7309. [8] WANG W, HONG X L, YAO Q L, et al. Bimetallic Ni-Pt nanoparticles immobilized on mesoporous N doped carbon as highly efficient catalysts for complete hydrogen evolution from hydrazine borane[J]. J Mater Chem A, 2020, 8: 13694-13701. [9] SEVIM M, KAPLAN F. Ketjen black supported monodisperse nickel-platinum alloy nanoparticles for the efficient catalyst in the hydrolytic dehydrogenation of ammonia borane[J]. Appl Organomet Chem, 2021, 35: e6095. [10] YAO Q, YANG K K, NIE W D, et al. Highly efficient hydrogen generation from hydrazine borane via a MoOx-promoted NiPd nanocatalyst[J]. Renew Energy, 2020, 147: 2024-2031. [11] WANG Y T, SHEN G Q, ZHANG Y X, et al. Visible-light-induced unbalanced charge on NiCoP/TiO2 sensitized system for rapid H2 generation from hydrolysis of ammonia borane[J]. Appl Catal B, Environ, 2020, 260: 118183. [12] DEKA J R, SAIKIA D, LU N F, et al. Space confined synthesis of highly dispersed bimetallic CoCu nanoparticles as effective catalysts for ammonia borane dehydrogenation and 4-nitrophenol reduction[J]. Appl Surf Sci, 2021, 538: 148091. [13] SHEN J L, CHEN W F, LV G, et al. Hydrolysis of NH3BH3 and NaBH4 by graphene quantum dots-transition metal nanoparticles for highly effective hydrogen evolution[J]. Int J Hydrogen Energy, 2021, 46: 796-805. [14] 刘军辉, 郭旭明, 宋亚坤, 等. 催化氨硼烷水解制氢研究进展[J]. 应用化学, 2021, 38(2): 157-169. LIU J H, GUO X M, SONG Y K, et al. Progress in research for hydrolytic dehydrogenation of ammonia borane[J]. Chinese J Appl Chem, 2021, 38(2): 157-169. [15] CHANDRA M, XU Q. A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia-borane[J]. J Power Sources, 2006, 156: 190-194. [16] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951. YAO Q L, DU H X, LU Z H. Catalytic hydrolysis of ammonia borane to hydrogen[J]. Chem Prog, 2020, 32(12): 1930-1951. [17] WANG Q, FU F Y, YANG S, et al. Dramatic synergy in CoPt nanocatalysts stabilized by “Click” dendrimers for evolution of hydrogen from hydrolysis of ammonia borane[J]. ACS Catal, 2019, 9(2):1110-1119. [18] SONG Q, WANG W W, HU X W, et al. Ru nanoclusters confined in porous organic cages for catalytic hydrolysis of ammonia borane and tandem hydrogenation reaction[J]. Nanoscale, 2019, 11: 21513-21521. [19] TONBUL Y, AKBAYRAK S, ÖZKAR S. Ceria supported rhodium nanoparticles: superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane[J]. Appl Catal B, Environ, 2016, 198: 162-170. [20] GUO L T, CAI Y Y, GE J M, et al. Multifunctional Au-Co@CN nanocatalyst for highly efficient hydrolysis of ammonia borane[J]. ACS Catal, 2015, 5(1): 388-392. [21] YANG L, LUO W, CHENG G Z. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane[J]. ACS Appl Mater Interfaces, 2013, 5(16): 8231-8240. [22] GAO M Y, YANG W W, YU Y S. Monodisperse PtCu alloy nanoparticles as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy, 2018, 43: 14293-14300. [23] MIAO H, MA K L, ZHU H R, et al. Ammonia borane dehydrogenation and selectivehydrogenation of functionalized nitroarene over a porous nickel-cobalt bimetallic catalyst[J]. RSC Adv, 2019, 9: 14580-14585. [24] YANG K K,YAO Q L, HUANG W, et al. Enhanced catalytic activity of NiM (M=Cr, Mo, W) nanoparticles for hydrogen evolution from ammonia borane and hydrazine borane[J]. Int J Hydrogen Energy, 2017, 42: 6840-6850. [25] FILIZ B C, FIGEN A K, PIŞKIN S. The remarkable role of metal promoters on the catalytic activity of Co-Cu based nanoparticles for boosting hydrogen evolution: ammonia borane hydrolysis[J]. Appl Catal B, Environ, 2018, 238: 365-380. [26] LIAO J Y, LV F, FENG Y F, et al. Electromagnetic-field-assisted synthesis of Ni foam film-supported CoCu alloy microspheres composed of nanosheets: a high performance catalyst for the hydrolysis of ammonia borane[J]. Catal Commun, 2019, 122: 16-19. [27] EL-HAFIZD R A, ESHAQ G, ELMETWALLY A E. Recent enhancement of ammonia borane hydrolysis using spinel-type metal ferrites nano-catalysts[J]. Mater Chem Phys, 2018, 217: 562-569. [28] LIAO J Y, FENG Y F, WU S Q, et al. Hexagonal CuCo2O4 nanoplatelets, a highly active catalyst for the hydrolysis of ammonia borane for hydrogen production[J]. Nanomaterials, 2019, 9: 360. [29] LIAO J Y, LU D S, DIAO G Q, et al. Co0.8Cu0.2MoO4 microspheres composed of nanoplatelets as a robust catalyst for the hydrolysis of ammonia borane[J]. ACS Sustainable Chem Eng, 2018, 6(5): 5843-5851. [30] LI Y T, ULLAH S, HAN Z, et al. Hierarchical porous CuNi-based bimetal-organic frameworks as efficient catalysts for ammonia borane hydrolysis[J]. Catal Commun, 2020, 143: 106057. [31] HASHIMIA S, NOHAN M A N M, XIAN C S, et al. Copper nanowires as highly efficient and recyclable catalyst for rapid hydrogen generation from hydrolysis of sodium borohydride[J]. Nanomaterials, 2020, 10(6): 1153. [32] WU H, WU M, WANG B Y, et al. Interface electron collaborative migration of Co-Co3O4/carbon dots: boosting the hydrolytic dehydrogenation of ammonia borane[J]. J Energy Chem, 2020, 48: 43-53. [33] CUI C C, LIU Y Y, MEHDI S, et al. Enhancing effect of Fe-doping on the activity of nano Ni catalyst towards hydrogen evolution from NH3BH3[J]. Appl Catal B, Environ, 2020, 265: 118612. [34] ZHANG X L, ZHANG D X, CHANG G G, et al. Bimetallic (Zn/Co) MOFs-derived highly dispersed metallic Co/HPC for completely hydrolytic dehydrogenation of ammonia-borane[J]. Ind Eng Chem Res, 2019, 58(17): 7209-7216. [35] MA X C, HE Y Y, ZHANG D X, et al. Cobalt-based MOF-derived CoP/hierarchical porous carbon (HPC) composites as robust catalyst for efficient dehydrogenation of ammonia-borane[J]. ChemistrySelect, 2020, 5: 2190-2196. [36] AKBAYRAK S, ÖZÇIFÇI Z, TABAK A. Noble metal nanoparticles supported on activated carbon: highly recyclable catalysts in hydrogen generation from the hydrolysis of ammonia borane[J]. J Colloid Interface Sci, 2019, 546: 324-332. [37] KAZICI H C, YILDIZ F, IZGI M S, et al. Novel activated carbon supported trimetallic PdCoAg nanoparticles as efficient catalysts for the hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy, 2019, 44: 10561-10572. [38] BROOKS R M, MAAFA I M, AL-ENIZI A M, et al. Electrospun bimetallic NiCr nanoparticles@carbon nanofibers as an efficient catalyst for hydrogen generation from ammonia borane[J]. Nanomaterials 2019, 9(8): 1082. [39] ZHANG J K, CHEN W Y, GE H B, et al. Synergistic effects in atomic-layer-deposited PtCox/CNTs catalysts enhancing hydrolytic dehydrogenation of ammonia borane[J]. Appl Catal B, Environ, 2018, 235: 256-263. [40] AKBAYRAK S, CAKMAK G, ÖZTURK T, et al. Rhodium(0), Ruthenium(0) and Palladium(0) nanoparticles supported on carbon-coated iron: magnetically isolable and reusable catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy, 2021, 46(25): 13548-13560. [41] YANG L, CAO N, DU C, et al. Graphene supported cobalt(0) nanoparticles for hydrolysis of ammonia borane[J]. Mater Lett, 2014, 115: 113-116. [42] CUI C C, LIU Y Y, MEHDI S, et al. Enhancing effect of Fe-doping on the activity of nano Ni catalyst towards hydrogen evolution from NH3BH3[J]. Appl Catal B, Environ, 2020, 265: 118612. [43] YAO Q L, LU Z H, YANG Y W, et al. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Nano Res, 2018, 11: 4412-4422. [44] YAO Q L, LU Z H, HUANG W, et al. Highly Pt-like activity of Ni-Mo/graphene catalyst for hydrogen evolution from hydrolysis of ammonia borane[J]. J Mater Chem A, 2016, 4: 8579. [45] ZHAO X, KE D D, HAN S M, et al. Reduced graphene oxide sheets supported waxberry-like Co catalysts for improved hydrolytic dehydrogenation of ammonia borane[J]. ChemistrySelect, 2019, 4: 2513-2518. [46] DU X G, TAI Y P, LIU H Y, et al. One-step synthesis of reduced graphene oxide supported CoW nanoparticles as efficient catalysts for hydrogen generation from NH3BH3[J]. React Kinet Mech Catal, 2018, 125: 171-181. [47] XU M, HUAI X L, ZHANG H. Highly dispersed CuCo nanoparticles supported on reduced graphene oxide as high-activity catalysts for hydrogen evolution from ammonia borane hydrolysis[J]. J Nanopart Res, 2018, 20: 329. [48] ZHOU Y H, ZHANG Z Y, WANG S Q, et al. RGO supported PdNi-CeO2 nanocomposite as an efficient catalyst for hydrogen evolution from the hydrolysis of NH3BH3[J]. Int J Hydrogen Energy, 2018, 43: 18745-18753. [49] ZHENG H C, FENG K, SHANG Y P, et al. Cube-like CuCoO nanostructures on reduced graphene oxide for H2 generation from ammonia borane[J]. Inorg Chem Front, 2018, 5: 1180-1187. [50] ZHANG R Z, ZHENG J L, CHEN T W, et al. RGO-wrapped Ni-P hollow octahedrons as noble-metal-free catalysts to boost the hydrolysis of ammonia borane toward hydrogen generation[J]. J Alloy Compd, 2018, 763: 538-545. [51] ZACHO S L, MIELBY J, KEGNÆS S. Hydrolytic dehydrogenation of ammonia borane over ZIF-67 derived Co nanoparticle catalysts[J]. Catal Sci Technol, 2018, 8:4741-4746. [52] ZHONG F Y, WANG Q, XU C L. Ultrafine and highly dispersed Ru nanoparticles supported on nitrogen-doped carbon nanosheets: efficient catalysts for ammonia borane hydrolysis[J]. Appl Surf Sci, 2018, 455:326-332. [53] WEI Z H, LIU Y, PENG Z K, et al. Cobalt-ruthenium nanoalloys parceled in porous nitrogen-doped graphene as highly efficient difunctional catalysts for hydrogen evolution reaction and hydrolysis of ammonia borane[J]. ACS Sustainable Chem Eng, 2019, 7(7): 7014-7023. [54] YUAN Y S, SUN L M, WU G Z, et al. Engineering nickel/palladium heterojunctions for dehydrogenation of ammonia borane: improving the catalytic performance with 3D mesoporous structures and external nitrogen-doped carbon layers[J]. Inorg Chem, 2020, 59(3): 2104-2110. [55] WANG W, Lu Z H, LUP Y, et al. Mesoporous carbon nitride supported Pd and Pd-Ni nanoparticles as highly efficient catalyst for catalytic hydrolysis of NH3BH3[J]. ChemCatChem, 2018, 10: 1620. [56] WEI R, CHEN Z C, LV H, et al. Ultrafine RhNi nanocatalysts confined in hollow mesoporous carbons for a highly efficient hydrogen production from ammonia borane[J]. Inorg Chem, 2021, 60(9): 6820-6828. [57] FAN Y R, LI X J, HE X C, et al. Effective hydrolysis of ammonia borane catalyzed by ruthenium nanoparticles immobilized on graphic carbon nitride[J]. Int J Hydrogen Energy, 2014, 39: 19982-19989. [58] LI Y T, ZHANG S H, ZHENG G P, et al. Ultrafine Ru nanoparticles anchored to porous g-C3N4 as efficient catalysts for ammonia borane hydrolysis[J]. Appl Catal A, Gen, 2020, 595: 117511. [59] LU R, HU M, XU C L, et al. Hydrogen evolution from hydrolysis of ammonia borane catalyzed by Rh/g-C3N4 under mild conditions[J]. Int J Hydrogen Energy, 2018, 43: 7038-7045. [60] LI Y T, ZHANG X L, PENG Z K, et al. Hierarchical porous g-C3N4 coupled ultrafine RuNi alloys as extremely active catalysts for the hydrolytic dehydrogenation of ammonia borane[J]. ACS Sustainable Chem Eng, 2020, 8(22): 8458-8468. [61] LI Y T, ZHANG X L, PENG Z K, et al. Highly efficient hydrolysis of ammonia borane using ultrafine bimetallic RuPd nanoalloys encapsulated in porous g-C3N4[J]. Fuel, 2020, 277: 118243. [62] WANGQ, XU C L, MING M, et al. In situ formation of AgCo stabilized on graphitic carbon nitride and concomitant hydrolysis of ammonia borane to hydrogen[J]. Nanomaterials, 2018, 8(5): 280. [63] GUO L L, GU X J, KANG K, et al. Porous nitrogen-doped carbon-immobilized bimetallic nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. J Mater Chem A, 2015, 3: 22807-22815. [64] LI J H, LI F Y, LIAO J Y, et al. Cu0.4Co0.6MoO4 nanorods supported on graphitic carbon nitride as a highly active catalyst for the hydrolytic dehydrogenation of ammonia borane[J]. Catalysts, 2019, 9: 714. [65] LU R, XU C L, WANG Q, et al. Ruthenium nanoclusters distributed on phosphorus-doped carbon derived from hypercrosslinked polymer networks for highly efficient hydrolysis of ammonia-borane[J]. Int J Hydrogen Energy, 2018, 43: 18253-18260. [66] ZHOU Y H, WANG S Q, ZHANG Z, et al. Hollow nickel-cobalt layered double hydroxide supported palladium catalysts with superior hydrogen evolution activity for hydrolysis of ammonia borane[J]. ChemCatChem, 2018, 10: 3206-3213. [67] ZHAO W, WANG R Y, WANG Y, et al. Effect of LDH composition on the catalytic activity of Ru/LDH for the hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy, 2019, 44: 14820-14830. [68] GUO K, DING Y, LUO J, et al. NiCu bimetallic nanoparticles on silica support for catalytic hydrolysis of ammonia borane: composition-dependent activity and support size effect[J]. ACS Appl Energy Mater, 2019, 2(8): 5851-5861. [69] UMEGAKI T, YABUUCHI K, YOSHIDA N, et al. In situ synthesized hollow spheres of a silica-ruthenium-nickel composite catalyst for the hydrolytic dehydrogenation of ammonia borane[J]. New J Chem, 2020, 44: 450-455. [70] ZHANG J P, LI J, YANG L J, et al. Efficient hydrogen production from ammonia borane hydrolysis catalyzed by TiO2-supported RuCo catalysts[J]. Int J Hydrogen Energy, 2021, 46: 3964-3973. [71] AKBAYRAK S, TONBUL Y, ÖZKAR S. Magnetically separable Rh0/Co3O4 nanocatalyst provides over a million turnovers in hydrogen release from ammonia borane[J]. ACS Sustainable Chem Eng, 2020, 8(10): 4216-4224. [72] LI J J, GUAN Q Q, WU H, et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions[J]. J Am Chem Soc, 2019, 141(37): 14515-14519. [73]TONBUL Y, AKBAYRAK S, ÖZKAR S. Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane[J]. J Colloid Interface Sci, 2019, 553: 581-587. [74] AKBAYRAK S, ÖZKAR S. Cobalt ferrite supported platinum nanoparticles: superb catalytic activity and outstanding reusability in hydrogen generation from the hydrolysis of ammonia borane[J]. J Colloid Interface Sci, 2021, 596: 100-107. [75] TONBUL Y, AKBAYRAK S, ÖZKAR S. Group 4 oxides supported Rhodium(0) catalysts in hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy, 2019, 44: 14164-14174. [76] LIX, YAN Y C, JIANG Y, et al. Ultra-small Rh nanoparticles supported on WO3-x nanowires as efficient catalysts for visible-light-enhanced hydrogen evolution from ammonia borane[J]. Nanoscale Adv, 2019, 1: 3941-3947. [77] TONBULY, AKBAYRAK S, ÖZKAR S. Palladium(0) nanoparticles supported on ceria: highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2016, 41: 11154-11162. [78] LU D S, LIAO J Y, LI H, et al. Co3O4/CuMoO4 hybrid microflowers composed of nanorods with rich particle boundaries as a highly active catalyst for ammonia borane hydrolysis[J]. ACS Sustainable Chem Eng, 2019, 7(19): 16474-16482. [79] LIAO J Y, FENG Y F, LIN W M, et al. CuO-NiO/Co3O4 hybrid nanoplates as highly active catalyst for ammonia borane hydrolysis[J]. Int J Hydrogen Energy, 2020, 45: 8168-8176. [80] HE J H, YAO Z D, XIAO X Z, et al. Heterostructured Ni/NiO nanoparticles on 1D porous MoOx for hydrolysis of ammonia borane[J]. ACS Appl Energy Mater, 2021, 4(2): 1208-1217. [81] LU D S, Li J H, LIN C H, et al. A simple and scalable route to synthesize CoxCu1-xCo2O4@CoyCu1-yCo2O4 yolk-shell microspheres, a high-performance catalyst to hydrolyze ammonia borane for hydrogen production[J]. Small, 2019, 15: 1805460. [82] AIJAZ A, KARKAMKAR A, CHOI Y J, et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach[J]. J Am Chem Soc, 2012, 134(34): 13926-13929. [83] DAI H M, SU J, HU K, et al. Pd nanoparticles supported on MIL-101 as high-performance catalysts for catalytic hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2014, 39: 4947-4953. [84] CAO N, SU J, LUO W, et al. Ni-Pt nanoparticles supported on MIL-101 as highly efficient catalysts for hydrogen generation from aqueous alkaline solution of hydrazine for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2014, 39: 9726-9734. [85] ZHANG L, ZHOU L Q, YANG K Z, et al. Pd-Ni nanoparticles supported on MIL-101 as high-performance catalysts for hydrogen generation from ammonia borane[J]. J Alloy Compd, 2016, 677: 87-95. [86] YANG K Z, ZHOU L Q, XIONG X, et al. RuCuCo nanoparticles supported on MIL-101 as a novel highly efficient catalysts for the hydrolysis of ammonia borane[J]. Micropor Mesopor Mater, 2016, 225: 1-8. [87] WEN L, SU J, WU X J, et al. Ruthenium supported on MIL-96: an efficient catalyst for hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Int J Hydrogen Energy, 2014, 39: 17129-17135. [88] YANG K Z, ZHOU L Q, YU G F, et al. Ru nanoparticles supported on MIL-53(Cr, Al) as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2016, 41: 6300-6309. [89] CHEN M H, ZHOU L Q, LU D, et al. RuCo bimetallic alloy nanoparticles immobilized on multi-porous MIL-53(Al) as a highly efficient catalyst for the hydrolytic reaction of ammonia borane[J]. Int J Hydrogen Energy, 2018, 43: 1439-1450. [90] FU F Y, WANG C L, WANG Q, et al. Highly selective and sharp volcano-type synergistic Ni2Pt@ZIF-8-catalyzed hydrogen evolution from ammonia borane hydrolysis[J]. J Am Chem Soc, 2018, 140(31): 10034-10042. [91] WANG W J, LIANG M W, JIANG Y, et al. Nano-Co embedded in porous ZIF-67 polyhedron to catalyze hydrolysis of ammonia borane[J]. Mater Lett, 2021, 293(31): 129702. [92] 翊青, 刘梨, 张淑娟, 等. NH2-UIO-66 负载 RuCuMo 纳米催化剂的制备及其催化产氢[J]. 无机材料学报, 2019, 34(12): 1316-1324. Yi Q, LIU L, ZHANG S J, et al. Preparation and catalytic hydrogen production of RuCuMo nano-catalyst supported by NH2-UIO-66[J]. Chinese J Inorg Mater, 2019, 34(12): 1316-1324. [93] XU C L, HU M, WANG Q, et al. Hyper-cross-linked polymer supported rhodium: an effective catalyst for hydrogen evolution from ammonia borane[J]. Dalton Trans, 2018, 47: 2561-2567. [94] CHEN X, XU X J, ZHENG X C, et al. Chitosan supported palladium nanoparticles: the novel catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Mater Res Bull, 2018, 103: 89-95. [95] YANG X Y, HE Y J, LI L Y, et al. One-pot fabrication of Pd nanoparticles@covalent-organic-framework-derived hollow polyamine spheres as a synergistic catalyst for tandem catalysis[J]. Chem Eur J, 2020, 26: 1864-1870. [96] LI Y T, ULLAH S, HAN Z, et al. Hierarchical porous CuNi-based bimetal-organic frameworks as efficient catalysts for ammonia borane hydrolysis[J]. Catal Commun, 2020, 143: 106057. [97] GENIS D, COS B, FILIZ K, et al. Reusable hybrid foam catalyst for hydrolytic dehydrogenation of amine adducts of borane: porous PVA-immobilized Co-Ru nanoparticles[J]. Micropor Mesopor Mater, 2020, 305: 110363. [98] HUANG H, WANG J, XU Y F, et al. Thermo-controllable dehydrogenation of ammonia borane by luminescent and thermo-responsive catalysts based on SiO2@Pt@PABI-Tb@PNIPAM[J]. Appl Catal A, 2020, 594: 117463. [99] JIA H, CHEN X, LIU C Y, et al. Ultrafine palladium nanoparticles anchoring graphene oxide-ionic liquid grafted chitosan self-assembled materials: the novel organic-inorganic hybrid catalysts for hydrogen generation in hydrolysis of ammonia borane[J]. Int J Hydrogen Energy, 2018, 43: 12081-12090. [100] LIU S, CHEN X, WU Z J, et al. Chitosan-reduced graphene oxide hybrids encapsulated Pd(0) nanocatalysts for H2 generation from ammonia borane[J]. Int J Hydrogen Energy, 2019, 44: 23610-23619. [101] KE D D, WANG J, ZHANG H M, et al. Hydrolytic dehydrogenation of ammonia borane catalyzed by poly(amidoamine) dendrimers-modified reduced graphene oxide nanosheets supported Ag0.3Co0.7 nanoparticles[J]. J Mater Sci Tech, 2018, 34: 2350-2358. [102] WEI J, ZHAO J B, CAI D, et al. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front Chem Sci Eng, 2020, 14: 857-867. [103] VEERAKUMAR P, LIN K. An overview of palladium supported on carbon-based materials: synthesis, characterization, and its catalytic activity for reduction of hexavalent chromium[J]. Chemosphere, 2020, 253: 126750. [104] YUAN Y S, SUN L M, WU G Z, et al. Engineering nickel/palladium heterojunctions for dehydrogenation of ammonia borane: improving the catalytic performance with 3D mesoporous structures and external nitrogen-doped carbon layers[J]. Inorg Chem, 2020, 59(3): 2104-2110. [105] LU R, XU C L, WANG Q, et al. Ruthenium nanoclusters distributed on phosphorus-doped carbon derived from hypercrosslinked polymer networks for highly efficient hydrolysis of ammonia-borane[J]. Int J Hydrogen Energy, 2018, 43: 18253-18260. [106] SONG F, HU X L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nat Commun, 2014, 5: 4477-4486. [107] CHEN H, HU L F, CHEN M, et al. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials[J]. Adv Funct Mater, 2014, 24: 934-942. [108] WANG B Q, SHANG J, GUO C, et al. A general method to ultrathin bimetal-MOF nanosheets arrays via in situ transformation of layered double hydroxides arrays[J]. Small, 2019, 15: 1804761. [109] ZHOU A W, DOU Y B, ZHOU J, et al. Rational localization of metal nanoparticles in yolk-shell MOFs for enhancing catalytic performance in selective hydrogenation of cinnamaldehyde[J]. ChemSusChem, 2020, 13: 205-211. [110] WU H, LUO Q Q, ZHANG R Q, et al. Single Pt atoms supported on oxidized graphene as a promising catalyst for hydrolysis of ammonia borane[J]. Chinese J Chem Phys, 2018, 31: 641. [111] WEI L, YANG Y M, YU Y N, et al. Visible-light-enhanced catalytic hydrolysis of ammonia borane using RuP2 quantum dots supported by graphitic carbon nitride[J]. Int J Hydrogen Energy, 2021, 46: 3811-3820. [112] FENG Y F, LIAO J Y, CHEN X D, et al. Synthesis of rattle-structured CuCo2O4 nanospheres with tunable sizes based on heterogeneous contraction and their ultrahigh performance toward ammonia borane hydrolysis[J]. J Alloy Compd, 2021, 863: 158089. |
[1] | 于宜辰, 张雨宸, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 本体金属氧化物在丙烷无氧脱氢中的研究进展[J]. 应用化学, 2023, 40(6): 789-805. |
[2] | 修海祥, 刘万强, 尹东明, 程勇, 王春丽, 王立民. AB2型Laves相储氢合金研究进展[J]. 应用化学, 2023, 40(5): 640-652. |
[3] | 朱凤, 彭小连, 张文彬. 质子给受体对电催化反应影响的研究进展[J]. 应用化学, 2023, 40(5): 666-680. |
[4] | 李慧慧, 姚开胜, 赵亚南, 范李娜, 田钰琳, 卢伟伟. 离子液体调控合成Pt-Pd双金属纳米材料及其催化氨硼烷水解释氢[J]. 应用化学, 2023, 40(4): 597-609. |
[5] | 李冰, 刘军辉, 宋亚坤, 李想, 郭旭明, 熊健. 金属-有机骨架材料在催化氨硼烷水解释氢中的研究进展[J]. 应用化学, 2023, 40(3): 329-340. |
[6] | 徐敏潇, 王亮, 陈成芳. 甲醛次硫酸氢钠二水合物促进的醌芳基化反应[J]. 应用化学, 2023, 40(3): 413-419. |
[7] | 林锦, 王芳珠, 吕灵灵. 工业原料制备大孔拟薄水铝石及在异佛尔酮选择性加氢中的应用[J]. 应用化学, 2023, 40(1): 79-90. |
[8] | 曹蓉, 夏杰桢, 廖漫华, 赵路超, 赵晨, 吴琪. 单原子催化剂在电化学合成氨中的理论研究进展[J]. 应用化学, 2023, 40(1): 9-23. |
[9] | 柳小虎, 赖小娟, 曹红燕, 王婷婷, 党志强. 起泡剂/稳泡剂/SiO2复合泡沫缓速酸液体系协同增效性能[J]. 应用化学, 2023, 40(1): 91-99. |
[10] | 黄旭娟, 王婷, 丁正青, 杨欣欣, 蔡照胜, 商士斌. 脱氢枞氧基聚氧乙烯缩水甘油醚接枝羟乙基壳聚糖水凝胶制备及其性能[J]. 应用化学, 2022, 39(9): 1421-1428. |
[11] | 张伟强, 王晨, 赵玉荣, 王栋, 王继乾, 徐海. 短肽超分子自组装驱动力及调控策略的研究发展[J]. 应用化学, 2022, 39(8): 1190-1201. |
[12] | 杜卫民, 刘欣, 朱琳, 付佳敏, 郭文山, 杨晓晴, 双培硕. 三元镍基硫属化物纳米棒阵列的简单合成及其高效的电催化析氧性能[J]. 应用化学, 2022, 39(8): 1252-1261. |
[13] | 李星国. 氢能的发展机遇与面临的挑战[J]. 应用化学, 2022, 39(7): 1157-1166. |
[14] | 王岩, 张树聪, 汪兴坤, 刘志承, 王焕磊, 黄明华. 电解海水析氢反应过渡金属基催化剂的研究进展[J]. 应用化学, 2022, 39(6): 927-940. |
[15] | 周友三, 张毅城, 吴思宇, 查飞, 陈德军, 常玥. 铜掺杂钙铝水滑石催化氧化异丙苯制备异丙苯过氧化氢[J]. 应用化学, 2022, 39(6): 941-948. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||