[1] | Ola O,Maroto-Valer M M. Review of Material Design and Reactor Engineering on TiO2 Photocatalysis for CO2 Reduction[J]. J Photochem Photobiol C,2015,24:16-42. | [2] | Guo H X,Kou X C,Zhao Y J,et al. Effect of Synergistic Interaction Between Ce and Mn on the CO2 Capture of Calcium-Based Sorbent: Textural Properties, Electron Donation, and Oxygen Vacancy[J]. Chem Eng J,2018,334:237-246. | [3] | Guo H X,Kou X C,Zhao Y J,et al. Role of Microstructure, Electron Transfer, and Coordination State in the CO2 Capture of Calcium-Based Sorbent by Doping(Zr-Mn)[J]. Chem Eng J,2018,336:376-385. | [4] | Guo H X,Yan S L,Zhao Y J,et al. Influence of Water Vapor on Cyclic CO2 Capture Performance in both Carbonation and Decarbonation Stages for Ca-Al Mixed Oxide[J]. Chem Eng J,2019,359:542-551. | [5] | Guo H X,Feng J Q,Zhao Y J,et al. Effect of Micro-Structure and Oxygen Vacancy on the Stability of (Zr-Ce)- Additive CaO-Based Sorbent in CO2 Adsorption[J]. J CO2 Util,2017,19:165-176. | [6] | Guo H X,Wang S P,Li C,et al. Incorporation of Zr into Calcium Oxide for CO2 Capture by a Simple and Facile Sol-Gel Method[J]. Ind Eng Chem Res,2016,55:7873-7879. | [7] | Wang S P,Fan S S,Zhao Y J,et al. Carbonation Condition and Modeling Studies of Calcium-Based Sorbent in the Fixed-Bed Reactor[J]. Ind Eng Chem Res,2014,53(25):10457-10464. | [8] | Turner J A.A Realizable Renewable Energy Future[J]. Science,1999,285(5428):687-689. | [9] | LI Ying.Synthesis of Cu/N-UiO Composite Materials and Their Visible-Light-Driven Photocatalytic Properties[D]. Tianjin:Tianjin University,2016(in Chinese). 李莹. Cu/N-UiO复合材料的制备及其可见光CO2还原性能研究[D]. 天津:天津大学,2016. | [10] | Habisreutinger S N,Schmidt-Mende L,Stolarczyk J K.Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors[J]. Angew Chem Int Ed,2013,52(29):7372-7408. | [11] | Wang K,Li Q,Liu B S,et al. Sulfur-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Performance[J]. Appl Catal B-Environ,2015,176/177:44-52. | [12] | Tu W,Zhou Y,Zou Z.Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges and Prospects[J]. Adv Mater,2014,26:4607-4626. | [13] | Liu G,Yang H G,Wang X L,et al. Enhanced Photoactivity of Oxygen-Deficient Anatase TiO2 Sheets with Dominant {001} Facets[J]. J Phys Chem C,2009,113:21784-21788. | [14] | Chen Y,Cao X, Gao B,et al. A Facile Approach to Synthesize N-Doped and Oxygen-Deficient TiO2 with High Visible-Light Activity for Benzene Decomposition[J]. Mater Lett,2013,94:154-157. | [15] | Liu X,Bi Y.In Situ Preparation of Oxygen-deficient TiO2 Microspheres with Modified {001} Facets for Enhanced Photocatalytic Activity[J]. RSC Adv,2017,7:9902-9907. | [16] | Fang W,Xing M,Zhang J.Modifications on Reduced Titanium Dioxide Photocatalysts:A Review[J]. J Photochem Photobiol C,2017,32:21-39. | [17] | Zhang N,Gao C,Xiong Y J.Defect Engineering:A Versatile Tool for Tuning the Activation of Key Molecules in Photocatalytic Reactions[J]. J Energy Chem,2019,37:43-57. | [18] | LI Junli.The Preparation of Oxygen Vacancy Doped TiO2 and Research in Photocatalytic Reduction of CO2[D]. Kaifeng:Henan University,2017(in Chinese). 李君莉. 氧空位掺杂TiO2的制备及其光还原CO2催化性能的研究[D]. 开封:河南大学,2017. | [19] | Karamian E,Sharifnia S.On the General Mechanism of Photocatalytic Reduction of CO2[J]. J CO2 Util,2016,16:194-203. | [20] | Lee J,Sorescu D C,Deng X Y.Electron-induced Dissociation of CO2 on TiO2(110)[J]. J Am Chem Soc,2011,133(26):10066-10069. | [21] | Zhang Q Y,Li Y,Ackerman E A,et al. Visible Light Responsive Iodine-Doped TiO2 for Photocatalytic Reduction of CO2 to Fuels[J]. Appl Catal A,2003,249:11-18. | [22] | Michalkiewicz B,Majewska J,Kadziołka G. Reduction of CO2 by Adsorption and Reaction on Surface of TiO2-Nitrogen Modified Photocatalyst[J]. J CO2 Util,2014,5:47-52. | [23] | Indrakanti V P,Kubicki J D,Schobert H H,et al. Photoinduced Activation?of CO2 on Ti-Based Heterogeneous Catalysts:Current State, Chemical Physics-Based Insights and Outlook[J]. Energy Environ Sci,2009,2:745-758. | [24] | Zhao C Y,Liu L J,Zhang Q Y,et al. Photocatalytic Conversion of CO2 and H2O to Fuels by Nanostructured Ce-TiO2/SBA-15 Composites[J]. Catal Sci Technol,2012,2:2558-2568. | [25] | Xi G C,Ouyang S X,Li P,et al. Ultrathin W18O49 Nanowires with Diameters below 1 nm:Synthesis, Near-infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide[J]. Angew Chem Int Ed,2012,51(10):2395-2399. | [26] | Xie K,Umezawa N,Zhang N,et al. Self-doped SrTiO3-δ Photocatalyst with Enhanced Activity for Artificial Photosynthesis under Visible Light[J]. Energy Environ Sci,2011,4:4211-4219. | [27] | CHEN Xingyu.Two-Step Synthesis of Laminar Vanadate via a Facile Hydrothermal Method and Enhancing the Photocatalytic Reduction of CO2 into Solar Fuel Through Tuning the Oxide Vacancies by Vacuum Illumination Treatment[D]. Nanjing:Nanjing University,2018(in Chinese). 陈星宇. 层状钒酸盐材料的两步水热法合成及其CO2还原性能与氧空位的研究[D]. 南京:南京大学,2018. | [28] | Fu J W,Jiang K X,Qiu X Q,et al. Product Selectivity of Photocatalytic CO2 Reduction Reactions[J]. Mater Today,2020,32:222-243. | [29] | Liu L J,Jiang Y Q,Zhao H L,et al. Engineering Coexposed (001) and (101) Facets in Oxygen-Deficient TiO2 Nanocrystals for Enhanced CO2 Photoreduction under Visible Light[J]. ACS Catal,2016,6(2):1097-1108. | [30] | Yin G H,Huang X Y,Chen T Y,et al. Hydrogenated Blue Titania for Efficient Solar to Chemical Conversions:Preparation, Characterization, and Reaction Mechanism of CO2 Reduction[J]. ACS Catal,2018,8(2):1009-1017. | [31] | Zhang W,He H,Tian Y,et al. Defect-Engineering of Mesoporous TiO2 Microspheres with Phase Junctions for Efficient Visible-light Driven Fuel Production[J]. Nano Energy,2019,66:1-8. | [32] | Liu J Y,Gong X Q,Alexandrova A N.Mechanism of CO2 Photocatalytic Reduction to Methane and Methanol on Defected Anatase TiO2(101):A Density Functional Theory Study[J]. J Phys Chem C,2019,123:3505-3511. | [33] | Rodriguez M M,Peng X,Liu L,et al. A Density Functional Theory and Experimental Study of CO2 Interaction with Brookite TiO2[J]. J Phys Chem C,2012,116:19755-19764. | [34] | Feng H F,Xu Z F,Ren L,et al. Activating Titania for Effcient Electrocatalysis by Vacancy Engineering[J]. ACS Catal,2018,8:4288-4293. | [35] | Yu H J,Li J Y,Zhang Y H,et al. Three-in-One Oxygen Vacancy:Whole Visible-spectrum Absorption, Efficient Charge Separation and Surface Site Activation for Robust CO2 Photoreduction[J]. Angew Chem Int Ed,2018,58(12):3880-3884. | [36] | Zhao Y,Chen G,Bian T,et al. Defect-Rich Ultrathin ZnAl-layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water[J]. Adv Mater,2015,27:7824-7831. | [37] | Wang Z L,Mao X,Chen P,et al. Understanding the Roles of Oxygen Vacancy in Hematite Based Photoelectrochemical Process[J]. Angew Chem Int Ed,2018,58(4):1030-1034. | [38] | Zhuang J D,Weng S X,Dai W X,et al. Effect of Interface Defect on Charge Transfer and Photoinduced Properties of TiO2 Bilayer Films[J]. J Phys Chem C,2012,116:25354-25361. | [39] | Li J,Zhang M,Guan Z,et al. Synergistic Effect of Surface and Bulk Single-Electron-Trapped Oxygen Vacancy of TiO2 in the Photocatalytic Reduction of CO2[J]. Appl Catal B-Environ,2017,206:300-307. | [40] | Khalilzadeh A,Shariati A.Photoreduction of CO2 over Heterogeneous Modified TiO2 Nanoparticles under Visible Light Irradiation:Synthesis, Process and Kinetic Study[J]. Sol Energy,2018,164:251-261. | [41] | Li L,Li P,Wang Y J,et al. Modulation of Oxygen Vacancy in Hydrangea-Like Ceria via Zr Doping for CO2 Photoreduction[J]. Appl Surf Sci,2018,452:498-506. | [42] | Han B,Song J N,Liang S J,et al. Hierarchical NiCo2O4 Hollow Nanocages for Photoreduction of Diluted CO2:Adsorption and Active Sites Engineering[J]. Appl Catal B-Environ,2020,260:1-7. | [43] | Tu W,Zhou Y,Liu Q,et al. An in Situ Simultaneous Reduction-Hydrolysis Technique for Fabrication of TiO2-Graphene 2D Sandwich-Like Hybrid Nanosheet:Graphene-Promoted Selectivity of Photocatalytic-Driven Hydrogenation and Coupling of CO2 into Methane and Ethane[J]. Adv Funct Mater,2013,23:1743-1749. | [44] | Sun S,Watanabe M,Wu J,et al. Ultrathin WO3·0.33H2O Nanotubes for CO2 Photoreduction to Acetate with High Selectivity[J]. J Am Chem Soc,2018,140(20):6474-6482. |
|