应用化学 ›› 2025, Vol. 42 ›› Issue (10): 1361-1374.DOI: 10.19894/j.issn.1000-0518.250019
薛子航, 蹇思豪, 韩敏航, 李波, 郝瑞鑫, 马超, 苗洋(
), 高峰
收稿日期:2025-01-10
接受日期:2025-08-26
出版日期:2025-10-01
发布日期:2025-10-29
通讯作者:
苗洋
基金资助:
Zi-Hang XUE, Si-Hao JIAN, Min-Hang HAN, Bo LI, Rui-Xin HAO, Chao MA, Yang MIAO(
), Feng GAO
Received:2025-01-10
Accepted:2025-08-26
Published:2025-10-01
Online:2025-10-29
Contact:
Yang MIAO
About author:Email: miaoyang198781@163.comSupported by:摘要:
二氧化硅气凝胶因其独特的三维网状结构而具备优异的隔热性能、低密度等优势,受到广泛关注。 然而,其力学性能差、易碎裂,以及传统制备工艺流程复杂、周期长和成本高的问题限制了其大规模应用。 本文以廉价的水玻璃为硅源、玻璃纤维为增强材料,通过溶胶-凝胶法和常压干燥工艺制备玻璃纤维增强的二氧化硅气凝胶复合毡。 探讨了老化时间、去离子水用量和浸泡时间、三甲基氯硅烷用量和改性时间对玻璃纤维增强二氧化硅气凝胶复合材料性能的影响。 在老化时间为10 h,去离子水用量为200 mL,浸泡2次,时间设置为(24+12) h,三甲基氯硅烷用量为18 mL,改性时间为60 h时,所制备的二氧化硅气凝胶毡比表面积达776.38 m2/g,密度为0.228 g/cm3,导热系数为0.0218 W/(m·K),抗压强度为2.4 MPa,抗拉强度为0.5 MPa。 该材料还表现出良好的高温稳定性和疏水性,疏水角为141.5(°),为其在隔热领域的工业化应用提供了新的实践方向。
中图分类号:
薛子航, 蹇思豪, 韩敏航, 李波, 郝瑞鑫, 马超, 苗洋, 高峰. 玻璃纤维增强二氧化硅气凝胶毡的低成本制备及性能[J]. 应用化学, 2025, 42(10): 1361-1374.
Zi-Hang XUE, Si-Hao JIAN, Min-Hang HAN, Bo LI, Rui-Xin HAO, Chao MA, Yang MIAO, Feng GAO. Low-Cost Preparation and Performance of Fiberglass Reinforced Silica Aerogel Blanket[J]. Chinese Journal of Applied Chemistry, 2025, 42(10): 1361-1374.
图2 老化时间对气凝胶复合材料性能的影响A. Adsorption-desorption curve; B. Pore size distribution; C. Specific surface area and pore size; D. Density and thermal conductivity
Fig.2 Effect of aging times on the properties of aerogel composites
图3 去离子水浸泡时间对气凝胶复合材料性能的影响A. Adsorption-desorption curve; B. Pore size distribution; C. Specific surface area and pore size; D. Density and thermal conductivity
Fig.3 Effect of deionized water immersion time on the properties of aerogel composites
图4 去离子水用量对气凝胶复合材料性能的影响A. Adsorption-desorption curve; B. Pore size distribution; C. Specific surface area and pore size; D. Density and thermal conductivity
Fig.4 Effect of deionized water dosage on the properties of aerogel composites
图5 改性时间对气凝胶复合材料性能的影响A. Adsorption-desorption curve; B. Pore size distribution; C. Specific surface area and pore size; D. Density and thermal conductivity
Fig.5 Effect of modification time on the properties of aerogel composites
图6 三甲基氯硅烷用量对气凝胶复合材料性能的影响A. Adsorption-desorption curve; B. Pore size distribution; C. Specific surface area and pore size; D. Density and thermal conductivity
Fig.6 Effect of trimethylchlorosilane on the properties of aerogel composites
图9 SiO2气凝胶玻璃纤维毡在不同温度下的性能变化A. Adsorption-desorption curve; B. Pore size distribution; C. XRD; D. Physical properties
Fig.9 Variation of properties of SiO2 aerogel composite felts at different temperatures
图10 SiO2气凝胶复合毡经不同温度处理后的SEM图A. 600 ℃; B. 800 ℃; C. 200× magnification at 1000 ℃; D. 20000× magnification at 1000 ℃
Fig.10 SEM images of SiO2 aerogel composite felts treated at different temperatures
图11 SiO2气凝胶复合毡的(A)压缩应力-应变曲线、(B)拉伸应力-应变曲线和(C)接触角
Fig.11 (A) Compressive stress-strain curve, (B) tensile stress-strain curve and (C) contact angle of SiO2 aerogel composite felts
| Ingredients | Reinforcement material | Drying method | Density/(g·cm-3) | Thermal conductivity/(W·m-1·K-1) | Compressive strength/MPa | Ref. |
|---|---|---|---|---|---|---|
| Water glass | Glass fiber | Atmospheric pressure | 0.219 | 0.025 | 2.40 | This study |
| TEOS | PET fiber | Supercritical | 0.222 | 0.028 | 0.17 | [ |
| TEOS | Glass fiber | Atmospheric pressure | 0.020 | 0.98 | [ | |
| TEOS | Glass fiber | Atmospheric pressure | 0.041 | 0.68 | [ | |
| Water glass | Ceramic fiber | Atmospheric pressure | 0.216 | 0.026 3 | 5.10 | [ |
| TEOS | Glass/Carbon fiber | Atmospheric pressure | 0.031 | 2.85 | [ | |
| Water glass | Carbon fiber | Atmospheric pressure | 0.199 | 0.032 5 | 0.30 | [ |
| TEOS | Polyamide pulp | Atmospheric pressure | 0.229 | 0.026 | 1.68 | [ |
表1 实验工艺与样品性能对比
Table 1 Comparison of experimental process and sample performance
| Ingredients | Reinforcement material | Drying method | Density/(g·cm-3) | Thermal conductivity/(W·m-1·K-1) | Compressive strength/MPa | Ref. |
|---|---|---|---|---|---|---|
| Water glass | Glass fiber | Atmospheric pressure | 0.219 | 0.025 | 2.40 | This study |
| TEOS | PET fiber | Supercritical | 0.222 | 0.028 | 0.17 | [ |
| TEOS | Glass fiber | Atmospheric pressure | 0.020 | 0.98 | [ | |
| TEOS | Glass fiber | Atmospheric pressure | 0.041 | 0.68 | [ | |
| Water glass | Ceramic fiber | Atmospheric pressure | 0.216 | 0.026 3 | 5.10 | [ |
| TEOS | Glass/Carbon fiber | Atmospheric pressure | 0.031 | 2.85 | [ | |
| Water glass | Carbon fiber | Atmospheric pressure | 0.199 | 0.032 5 | 0.30 | [ |
| TEOS | Polyamide pulp | Atmospheric pressure | 0.229 | 0.026 | 1.68 | [ |
| [1] | CHARAI M, SGHIOURI H, MEZRHAB A, et al. Thermal insulation potential of non-industrial hemp (Moroccan cannabis sativa L.) fibers for green plaster-based building materials[J]. J Cleaner Prod, 2021, 292: 126064. |
| [2] | ALIFANOV O M, SALOSINA M O, BUDNIK S A, et al. Design of aerospace vehicles' thermal protection based on heat-insulating materials with optimal structure[J]. Aerospace, 2023, 10(7): 629. |
| [3] | RAZA M, AL ABDALLAH H, KOZAL M, et al. Development and characterization of polystyrene-date palm surface fibers composites for sustainable heat insulation in construction[J]. J Building Eng, 2023, 75: 106982. |
| [4] | 郝尚军, 赵振营, 郝珍. 新型建筑材料在建筑工程中的应用与发展[J]. 石材, 2024(8): 50-52. |
| HAO S J, ZHAO Z Y, HAO Z. Application and development of new building materials in construction engineering[J]. Stone, 2024(8): 50-52. | |
| [5] | REZAEI S, ZOLALI A M, JALALI A, et al. Strong, highly hydrophobic, transparent, and super-insulative polyorganosiloxane-based aerogel[J]. Chem Eng J, 2021, 413: 127488. |
| [6] | AHMED M A, MAHMOVD S A, MOHAMED A A, et al. Advances in aerogel composites for environmental remediation[M].Netherlands: Elsevier Science Direct, 2021. |
| [7] | RASHID A B, SHISHIR S I, MAHFUZ M A, et al. Silica aerogel: synthesis, characterization, applications, and recent advancements[J]. Part Part Syst Char, 2023, 40(6): 2200186. |
| [8] | YANG D, DONG S, CUI T, et al. Multifunctional carbon fiber reinforced C/SiOC aerogel composites for efficient electromagnetic wave absorption, thermal insulation, and flame retardancy[J]. Small, 2024, 20(23): 2308145. |
| [9] | 赵一帆, 宋梓豪, 崔升, 等. 超疏水聚丙烯纤维/SiO2气凝胶复合材料的制备及吸油性能[J]. 南京工业大学学报(自然科学版), 2020, 42(4): 493-499. |
| ZHAO Y F, SONG Z H, CUI S, et al. Preparation and oil adsorption properties of superhydrophobic polypropylene fiber/silica aerogels composites[J]. J Naning Technol Univ (Nat Sci Ed), 2020, 42(4): 493-499. | |
| [10] | MA J W, ZENG F R, LIN X C, et al. A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling[J]. Science, 2024, 385(6704): 68-74. |
| [11] | MA K, CHEUNG Y H, KIRLIKOVALI K O, et al. Fibrous Zr‐MOF nanozyme aerogels with macro‐nanoporous structure for enhanced catalytic hydrolysis of organophosphate toxins[J]. Adv Mater, 2024, 36(10): 2300951. |
| [12] | YUE S, LI X, YU H, et al. Preparation of high-strength silica aerogels by two-step surface modification via ambient pressure drying[J]. J Porous Mater, 2021, 28: 651-659. |
| [13] | JIANG L, KATO K, MAYUMI K, et al. One-pot synthesis and characterization of polyrotaxane-silica hybrid aerogel[J]. ACS Macro Lett, 2017, 6(3): 281-286. |
| [14] | ZHAO Y, ZHONG K, LIU W, et al. Preparation and oil adsorption properties of hydrophobic microcrystalline cellulose aerogel[J]. Cellulose, 2020, 27(13): 7663-7675. |
| [15] | 张鑫源, 李淑敏, 夏晨康, 等. 不同干燥方式对SiO2气凝胶物理性能的影响[J]. 应用化工, 2022, 51(8): 2300-2305, 2310. |
| ZHANG X Y, LI S M, XIA C K, et al. Influence of different drying methods on physical properties of SiO2 aerogel[J]. Appl Chem Ind, 2022, 51(8): 2300-2305, 2310. | |
| [16] | ZHAO C, LI Y, YE W, et al. Performance regulation of silica aerogel powder synthesized by a two-step sol-gel process with a fast ambient pressure drying route[J]. J Non-Cryst Solids, 2021, 567: 120923. |
| [17] | 王亮, 辛怡, 曹永平, 等. 芳纶纤维毡增强二氧化硅气凝胶隔热材料的制备及其性能[J/OL]. 西安工程大学学报, 1-7[2025-03-04]. |
| WANG L, XIN Y, CAO Y P, et al. Preparation and properties of aramid fiber mat reinforced silica aerogel thermal insulation material[J/OL]. J Xi'an Polytechnic Univ, 1-7[2025-03-04]. | |
| [18] | 杜高明, 康大伟, 贾帅德, 等. 玄武岩-玻璃纤维/SiO2气凝胶复合材料耐高温及抗火性能研究[J]. 材料科学与工艺, 2025, 33(1): 22-30. |
| DU G M, KANG D W, JIA S D, et al. Study on high temperature resistance and fire resistance of basalt-glass fiber/SiO2 aerogel composites[J]. Mater Sci Technol, 2025, 33(1): 22-30. | |
| [19] | PENG F, JIANG Y, FENG J, et al. Thermally insulating, fiber-reinforced alumina-silica aerogel composites with ultra-low shrinkage up to 1500 ℃[J]. Chem Eng J, 2021, 411: 128402. |
| [20] | YI Z H, ZHANG X, YAN L W, et al. Super-insulated, flexible, and high resilient mullite fiber reinforced silica aerogel composites by interfacial modification with nanoscale mullite whisker[J]. Compos Part B Eng, 2022, 230: 109549. |
| [21] | HUNG W C, HORNG R S, SHIA R E. Investigation of thermal insulation performance of glass/carbon fiber-reinforced silica aerogel composites[J]. J Sol Gel Sci Technol, 2021, 97: 414-421. |
| [22] | 郭志伟, 唐振中, 孙正明, 等. 二氧化硅气凝胶的低成本制备研究进展[J]. 中国水泥, 2024(12): 48-52. |
| GUO Z W, TANG Z Z, SUN Z M, et al. Research progress on low-cost preparation of silica aerogels[J]. China Cement, 2024(12): 48-52. | |
| [23] | XIA C K, HAO M Y, LIU W H, et al. Synthesis of Al2O3-SiO2 aerogel from water glass with high thermal stability and low thermal conductivity[J]. J Sol Gel Sci Technol, 2023, 106(2): 561-571. |
| [24] | XU K, WU C, CHEN Z, et al. Anti-ablation and insulation integrated gradient quartz fiber needle felt reinforced SiO2 ceramic/aerogel composite for thermal protection[J]. Ceram Int, 2025, 51(2): 2094-2103. |
| [25] | XUE J, HAN R, LI Y, et al. Advances in multiple reinforcement strategies and applications for silica aerogel[J]. J Mater Sci, 2023, 58(36): 14255-14283. |
| [26] | LI M, CHEN X, LI X, et al. Controllable strong and ultralight aramid nanofiber-based aerogel fibers for thermal insulation applications[J]. Adv Fiber Mater, 2022, 4(5): 1267-1277. |
| [27] | ZHANG X, CHEN H, HAO Y, et al. A low-carbon route optimization method for cold chain logistics considering traffic status in China[J]. Comput Ind Eng, 2024, 193: 110304. |
| [28] | ZHOU X, LUO G, WANG H, et al. Development of a novel bamboo cellulose nanofibrils hybrid aerogel with high thermal-insulating performance for fresh strawberry cold-chain logistics[J]. Int J Biol Macromol, 2023, 229: 452-462. |
| [29] | 刘维海, 夏晨康, 张鑫源, 等. 液-液溶剂置换法制备超疏水SiO2气凝胶[J]. 硅酸盐通报, 2023, 42(6): 2233-2241. |
| LIU W H, XIA C K, ZHANG X Y, et al. Preparation of superhydrophobic SiO2 aerogel by liquid-liquid solvent replacement method[J]. Bull Chin Ceram Soc, 2023, 42(6): 2233-2241. | |
| [30] | 张延青, 李强, 张娜. SiO2气凝胶/PET保温隔热毡的制备与性能研究[J]. 合成纤维工业, 2022, 45(6): 19-23, 28. |
| ZHANG Y Q, LI Q, ZHANG N. Preparation and performance of SiO2 aerogel/PET thermal insulation felt[J]. China Synth Fiber Ind, 2022, 45(6): 19-23, 28. | |
| [31] | 李静, 孙健, 王韩, 等. 适用于建筑隔热的二氧化硅气凝胶制备与性能[J]. 新型建筑材料, 2022, 49(4): 119-123. |
| LI J, SUN J, WANG H, et al. Preparation and properties of silica aerogel suitable for building insulation[J]. New Building Mater, 2022, 49(4): 119-123. | |
| [32] | 罗丹, 龙丽娟, 秦舒浩, 等. 玻璃纤维和碳纤维增强二氧化硅气凝胶复合材料的制备及性能研究[J]. 化工新型材料, 2022, 50(4): 161-165. |
| LUO D, LONG L J, QIN S H, et al. Preparation and property of GF ang CF reinforced SiO2 aerogel composites[J]. New Chem Mater, 2022, 50(4): 161-165. | |
| [33] | 刘光武, 周斌, 倪星元, 等. 复合增强型SiO2气凝胶的一步法快速制备与性能表征[J]. 硅酸盐学报, 2015, 43(7): 934-940. |
| LIU G W, ZHOU B, NI X Y, et al. Preparation and characterization of composite SiO2 aerogel by a novel one-step modified process[J]. J Chin Ceramic Soc, 2015, 43(7): 934-940. | |
| [34] | HUNG W C, HORNG R S, SHIA R E. Investigation of thermal insulation performance of glass/carbon fiber-reinforced silica aerogel composites[J]. J Sol Gel Sci Technol, 2021, 97: 414-421. |
| [35] | ŚLOSARCZYK A. Carbon fiber-silica aerogel composite with enhanced structural and mechanical properties based on water glass and ambient pressure drying[J]. Nanomater, 2021, 11(2): 258. |
| [36] | GHICA M E, ALMEIDA C M R, FONSECA M, et al. Optimization of polyamide pulp-reinforced silica aerogel composites for thermal protection systems[J]. Polymers, 2020, 12(6): 1278. |
| [1] | 孙海龙, 王昊鹏, 程宏达, 李祎, 韩常玉. 左旋聚乳酸/右旋聚乳酸/玻璃纤维复合材料结晶、流变和力学性能[J]. 应用化学, 2025, 42(8): 1096-1104. |
| [2] | 高佳, 宋夫交, 程文强, 葛艳, 许琦. Pd-Cu/ZrO2催化CO2加氢制甲醇的性能[J]. 应用化学, 2020, 37(2): 160-167. |
| [3] | 万露, 付争兵. 锂离子电池负极材料碳氮包覆钛酸锂的制备及表征[J]. 应用化学, 2018, 35(1): 116-122. |
| [4] | 邹晓梅, 陈艳, 朱兴旺, 刘高鹏, 郭心玮, 雷琴, 柯小雪, 李帅星, 华英杰, 王崇太. Keggin型铬取代的磷钨杂多阴离子/二氧化钛纳米膜光催化剂的制备及可见光催化性能[J]. 应用化学, 2016, 33(3): 320-329. |
| [5] | 江莉梅, 邹翔宇, 韦钦磊, 宋琼, 邓爽, 张洪波, 苏春辉. 含氟CaO-P2O5-SiO2-Na2O-B2O3玻璃陶瓷的制备及性能表征[J]. 应用化学, 2015, 32(4): 442-446. |
| [6] | 聂桂珍, 李来生, 程彪平, 周仁丹, 张宏福. β-环糊精毛细管电色谱法拆分和测定马尼地平、尼卡地平对映体[J]. 应用化学, 2014, 31(12): 1472-1480. |
| [7] | 胡庆兰. 自制离子液体固相微萃取涂层分析人体尿液中的五氯酚[J]. 应用化学, 2013, 30(03): 323-328. |
| [8] | 李方, 帅长庚, 何琳, 王世伟, 杨小牛. 可用作水润滑轴承的聚氨酯复合材料的制备[J]. 应用化学, 2012, 29(01): 14-17. |
| [9] | 饶蔚兰, 潘志权, 向守信. 稀土固体超强酸的制备及其对硬脂肪酸酯化反应的催化[J]. 应用化学, 2011, 28(08): 907-912. |
| [10] | 李英杰, 郝秀菊, 张春雨, 梁辉. 甲基丙基酸丁酯/SiO2/TiO2有机-无机杂化毛细管整体柱的制备及应用[J]. 应用化学, 2010, 27(12): 1457-1461. |
| [11] | 蒋家兴,赵剑曦,廖新焕,姜蓉. Ni-Al2O3太阳光热转换吸收薄膜的制备[J]. 应用化学, 2010, 27(03): 358-362. |
| [12] | 翟林峰, 史铁钧, 于少明. 可纺性锆溶胶的制备与应用 Ⅰ.氧化锆连续纤维的制备[J]. 应用化学, 2008, 25(6): 637-641. |
| [13] | 李朝辉, 李光玉, 高冬梅, 连建设. 中温燃料电池阴极材料la0.6sr0.4fe0.8co0.2o3的合成与性能[J]. 应用化学, 2007, 24(1): 25-29. |
| [14] | 田世哲, 赵军钗, 乔从德, 姬相玲, 姜炳政. 溶胶-凝胶法制备双钙钛矿型氧化物SrLaMnBO6(B:Mo,W)及其磁学性能[J]. 应用化学, 2006, 23(9): 945-948. |
| [15] | 张玲, 蔡涛, 姚英政, 伍青. SiO2-TiO2二元材料及其杂化材料的制备和表征[J]. 应用化学, 2005, 22(9): 984-988. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||