应用化学 ›› 2025, Vol. 42 ›› Issue (5): 642-655.DOI: 10.19894/j.issn.1000-0518.240358
• 综合评述 • 上一篇
收稿日期:2024-11-07
接受日期:2025-03-21
出版日期:2025-05-01
发布日期:2025-06-05
通讯作者:
李建军
基金资助:
Jian-Jun LI(
), Jia-Ye HE, Bi-Hai HOU
Received:2024-11-07
Accepted:2025-03-21
Published:2025-05-01
Online:2025-06-05
Contact:
Jian-Jun LI
About author:724722548@qq.comSupported by:摘要:
近年来,荧光纳米材料应用于唇印可视化检测领域日益增多,由此衍生出了唇印荧光纳米显现可视化技术,该技术具有高灵敏度、高分辨率、高稳定性、强烈荧光性能和高生物相容性等特点。 因此,本综述从显现材料和效果评价方面详细总结了唇印荧光纳米可视化检测中国内外的研究进展和热点内容。 在显现材料方面,重点介绍了基于普通有机荧光染料、荧光碳纳米粉末和稀土发光纳米材料的唇印可视化检测分析应用; 在显现效果评价方面,从对比度、灵敏度、选择性和毒害性分析了荧光纳米材料唇印可视化检测的效果评价方法,并归纳了显现效果的影响因素。 最后,对唇印荧光纳米可视化检测未来发展方向提出了全新展望: 致力于制备复合型荧光材料; 解决唇印可视化检测中DNA无损提取技术; 提升唇印证据价值。
中图分类号:
李建军, 何佳烨, 侯碧海. 荧光纳米材料在唇印可视化检测中的研究进展[J]. 应用化学, 2025, 42(5): 642-655.
Jian-Jun LI, Jia-Ye HE, Bi-Hai HOU. Research Advancements in the Visual Detection of Lip Prints Using Fluorescent Nanomaterials[J]. Chinese Journal of Applied Chemistry, 2025, 42(5): 642-655.
| Sr. No. | Type of features | Graphic symbols | Sr. No. | Type of features | Graphic symbols |
|---|---|---|---|---|---|
| 1 | A horizontal line | ![]() | 12 | An enclosure | ![]() |
| 2 | A horizontal bifurcation | ![]() | 13 | Thorn like | ![]() |
| 3 | Horizontal intersected bifurcations | ![]() | 14 | A kite | ![]() |
| 4 | A vertical arch | ![]() | 15 | Firework like | ![]() |
| 5 | A horizontal arch | ![]() | 16 | A quadrilateral | ![]() |
| 6 | An uphill | ![]() | 17 | A twin triangle | ![]() |
| 7 | A vertical curved bifurcation | ![]() | 18 | A spider | ![]() |
| 8 | A horizontal curved bifurcation | ![]() | 19 | A diamond | ![]() |
| 9 | A double bifurcation | ![]() | 20 | Curved short ridges | ![]() |
| 10 | A trifurcation | ![]() | 21 | An hourglass | ![]() |
| 11 | A hooked bifurcation | ![]() | 22 | Tented branches | ![]() |
表1 细节特征划分情况[24]
Table 1 Detail feature division situation[24]
| Sr. No. | Type of features | Graphic symbols | Sr. No. | Type of features | Graphic symbols |
|---|---|---|---|---|---|
| 1 | A horizontal line | ![]() | 12 | An enclosure | ![]() |
| 2 | A horizontal bifurcation | ![]() | 13 | Thorn like | ![]() |
| 3 | Horizontal intersected bifurcations | ![]() | 14 | A kite | ![]() |
| 4 | A vertical arch | ![]() | 15 | Firework like | ![]() |
| 5 | A horizontal arch | ![]() | 16 | A quadrilateral | ![]() |
| 6 | An uphill | ![]() | 17 | A twin triangle | ![]() |
| 7 | A vertical curved bifurcation | ![]() | 18 | A spider | ![]() |
| 8 | A horizontal curved bifurcation | ![]() | 19 | A diamond | ![]() |
| 9 | A double bifurcation | ![]() | 20 | Curved short ridges | ![]() |
| 10 | A trifurcation | ![]() | 21 | An hourglass | ![]() |
| 11 | A hooked bifurcation | ![]() | 22 | Tented branches | ![]() |
| Year | Materials | Method | λex/nm | Ref. |
|---|---|---|---|---|
| 2004 | Nile red | Electrostatic adsorption | 553 | [ |
| 2007 | RE-Descent | Electrostatic adsorption | 390 | [ |
| 2010 | Sudan black | Electrostatic adsorption | 590~610 | [ |
| 2019 | Diamond ? | Electrostatic adsorption | 375 | [ |
| 2021 | Indigo | Chemical bonding | 610~650 | [ |
| 2021 | Roselle extract | Chemical bonding | 375 | [ |
| 2022 | Indigo | Chemical bonding | 610~650 | [ |
表2 荧光有机材料唇印可视化检测研究概况
Table 2 Research summary of visual detection of lip print by organic fluorescent materials
| Year | Materials | Method | λex/nm | Ref. |
|---|---|---|---|---|
| 2004 | Nile red | Electrostatic adsorption | 553 | [ |
| 2007 | RE-Descent | Electrostatic adsorption | 390 | [ |
| 2010 | Sudan black | Electrostatic adsorption | 590~610 | [ |
| 2019 | Diamond ? | Electrostatic adsorption | 375 | [ |
| 2021 | Indigo | Chemical bonding | 610~650 | [ |
| 2021 | Roselle extract | Chemical bonding | 375 | [ |
| 2022 | Indigo | Chemical bonding | 610~650 | [ |
图7 唇印可视化检测效果: (A)唇印及其不同的唇线; (B)Ⅴ型, (C) Ⅰ型, (D) Ⅰ′型和(E) Ⅲ型[43]
Fig.7 Visual detection effect of lip print: (A) lip print and its different tegrooves; (B) Type V, (C) Type Ⅰ, (D) Type Ⅰ′, and (E) Type Ⅲ[43]
图9 SAYO∶Er3+对NaNO2诱导红细胞和蛋白质羰基影响[52]A. PC status; B. Comparison of RBC damage; C. RBC content
Fig.9 The effect of SAYO∶Er3+ NP on NaNO2 induced RBC and PC[52]
| Year | Materials | Synthetic method | Particle size /nm | λex/nm | Luminous color | Ref. |
|---|---|---|---|---|---|---|
| 2017 | BaTiO3∶Dy3+ | Sonochemistry | 35 | 254 | White | [ |
| 2018 | LaOF∶Sm3+ | Sonochemistry | 20 | 406 | White | [ |
| 2018 | CaAl2O4∶Eu2+/Dy3+ | Combustion | 33 | 326 | Blue | [ |
| 2020 | BiOCl∶Tb3+/Li+ | Combustion | 37 | 254 | Green | [ |
| 2022 | BiOCl∶Tb3+ | Combustion | 37 | 365 | Green | [ |
| 2022 | LaNb2VO9∶Dy3+ | Solid-Phase | 30 | 307 | Yellow | [ |
| 2022 | LaNb2VO9∶Sm3+ | Solid-Phase | 39 | 308 | Orange-red | [ |
| 2023 | ZAO∶5Co2+ | Combustion | 22 | 320 | Blue | [ |
| 2023 | BaSrY4O8∶Eu3+ | Combustion | 19 | 365/395 | Red or purple | [ |
| 2023 | Sr9Al6O18∶Er3+ | Combustion | 29 | 378 | Green | [ |
| 2023 | GdCaAl3O7∶Eu3+ | Combustion | 37 | 375 | Orange-red | [ |
| 2023 | Sr6Al4Y2O15∶Er3+ | Combustion | 23 | 375 | Green | [ |
| 2024 | Sr9Al6O18∶Dy3+ | Combustion | 37 | 350 | White | [ |
| 2024 | Sr2MgSi2O7∶Fe3+ | Combustion | 53 | 345 | Orange-red | [ |
| 2024 | BiOCl∶Sm3+ | Solid-Phase | 21 | 408 | Orange-red | [ |
表3 稀土发光纳米材料唇印可视化检测研究概况
Table 3 Research summary of visual detection of lip print by rare earth luminescent nano-materials
| Year | Materials | Synthetic method | Particle size /nm | λex/nm | Luminous color | Ref. |
|---|---|---|---|---|---|---|
| 2017 | BaTiO3∶Dy3+ | Sonochemistry | 35 | 254 | White | [ |
| 2018 | LaOF∶Sm3+ | Sonochemistry | 20 | 406 | White | [ |
| 2018 | CaAl2O4∶Eu2+/Dy3+ | Combustion | 33 | 326 | Blue | [ |
| 2020 | BiOCl∶Tb3+/Li+ | Combustion | 37 | 254 | Green | [ |
| 2022 | BiOCl∶Tb3+ | Combustion | 37 | 365 | Green | [ |
| 2022 | LaNb2VO9∶Dy3+ | Solid-Phase | 30 | 307 | Yellow | [ |
| 2022 | LaNb2VO9∶Sm3+ | Solid-Phase | 39 | 308 | Orange-red | [ |
| 2023 | ZAO∶5Co2+ | Combustion | 22 | 320 | Blue | [ |
| 2023 | BaSrY4O8∶Eu3+ | Combustion | 19 | 365/395 | Red or purple | [ |
| 2023 | Sr9Al6O18∶Er3+ | Combustion | 29 | 378 | Green | [ |
| 2023 | GdCaAl3O7∶Eu3+ | Combustion | 37 | 375 | Orange-red | [ |
| 2023 | Sr6Al4Y2O15∶Er3+ | Combustion | 23 | 375 | Green | [ |
| 2024 | Sr9Al6O18∶Dy3+ | Combustion | 37 | 350 | White | [ |
| 2024 | Sr2MgSi2O7∶Fe3+ | Combustion | 53 | 345 | Orange-red | [ |
| 2024 | BiOCl∶Sm3+ | Solid-Phase | 21 | 408 | Orange-red | [ |
图12 稀土纳米材料显现唇印效果: (A)唇印边缘轮廓; (B)细节特征; (C)唇沟; (D)其他痕迹[54]
Fig.12 The lip print effect of rare earth nanomaterials: (A) Lip print edge contour; (B) Detail features; (C) Lip groove; (D) Other traces[54]
图13 不同粉末显现玻璃基材上唇印可视化程度: (A)靛蓝天然色素微米级[33]; (B)洛神花合成色素微米级[37]; (C) LaOF∶Sm3+下转换发光纳米粉[44]
Fig.13 Visual detection effect of lip print on glass substrates with different powders: (A) Indigo natural pigment at the micrometer level[33]; (B) Lorraine flower synthesizes pigments at the micrometer level[37]; (C) LaOF∶Sm3+ down conversion luminescence nano powder[44]
图14 连续形成的3枚唇印黄色方框内物质区域和空白区域灰度值变化[50]A. The first lip print appears; B. The second lip print appears; C. The third lip print appears; A'-C'. Lip print grayscale pixel image of A-C
Fig.14 The grayscale values of the material and blank area within the yellow box[50]
图15 洛神花提取色素荧光染料显现唇印接触DNA的STR检验图谱[37]
Fig.15 STR analysis of lip print contact DNA revealed by fluorescent dye extracted from Luoshen flower pigment[37]
| 1 | NEWTON M. The encyclopedia of crime scene investigation[M]. New York: Infobase Publishing, 2010. |
| 2 | SUZUKI K, TSUCHIAHASHI Y. A new attempt of personal identification by means of lip print[J]. Canadian Soc Forensic Sci J, 1971, 4(4): 154-158. |
| 3 | TSUCHIHASHI Y. Studies on personal identification by means of lip prints[J]. Forensic Sci, 1974, 3: 233-248. |
| 4 | KASPRZAK J. Possibilities of cheiloscopy[J]. Forensic Sci Int, 1990, 46(1/2): 145-151. |
| 5 | BÉCUE A, CHAMPOD C. Fingermarks and other body impressions-a review (July 2013-July 2016)[C]//18th Interpol forensic science symposium, Lyon (France). 2016. |
| 6 | KASPRZAK J, FONSECA G M. Lip print evidence: Poland as the last bastion of practical cheiloscopy[J]. Forensic Sci Rev, 2024, 36: 55-70. |
| 7 | FRANCO A, LIMA L K G, OLIVEIRA M N, et al. The weak evidence of lip print analysis for sexual dimorphism in forensic dentistry: a systematic literature review and meta-analysis[J]. Sci Rep, 2021, 11(1): 24192. |
| 8 | BUZEA C, PACHECO I I, ROBBIE K. Nanomaterials and nanoparticles: sources and toxicity[J]. Biointerphases, 2007, 2(4): 17-71. |
| 9 | BECUE A, CHAMPOD C, MARGOT P. Use of gold nanoparticles as molecular intermediates for the detection of fingermarks[J]. Forensic Sci, 2007, 168(2/3): 169-176. |
| 10 | MAO Y, GUPTA S K. Metal oxide nanomaterials: from fundamentals to applications[J]. Nanomaterials, 2022, 12(23): 4340. |
| 11 | BAZHUKOVA I N, PUSTOVAROV V A, MYSHKINA A V, et al. Luminescent nanomaterials doped with rare earth ions and prospects for their biomedical applications (a review)[J]. Opt Spectrosc, 2020, 128: 2050-2068. |
| 12 | ZHANG S, ZHANG L, HUANG L, et al. Study on the fluorescence properties of carbon dots prepared via combustion process[J]. J Lumin, 2019, 206: 608-612. |
| 13 | SAKAMOTO R, FUKUI N, MAEDA H, et al. Layered metal-organic frameworks and metal-organic nanosheets as functional materials[J]. Coordination Chem Rev, 2022, 472: 214787. |
| 14 | BAI J, QIN F, HE P, et al. Carbon dots-based luminescent materials with aggregation-induced emission and solvent crystallization-induced emission behaviors[J]. Inorg Chem Commun, 2023, 151: 110614. |
| 15 | KUMAR I, KUMAR S, SINGH M, et al. Application of nanotechnology in forensic DNA and help to investigations on the crime scene analysis[J]. World J Pharm Res, 2016, 5(1): 266-276. |
| 16 | KUMAR P. Cheiloscopy: efficacy of flouroscent dye over lysochrome dye in developing invisible lip prints[J]. Int J Contemp Dentistry, 2010, 1(3): 1-3. |
| 17 | SABARINATH B, SIVAPATHASUNDHARAM B, VASANTHAKUMAR V. Plasma cell granuloma of lip[J]. Dental Res, 2012, 23(1): 101-103. |
| 18 | YANG J C, RAJ J. Postmortem identification in forensic odontology[J]. Int J Forensic Odontol, 2017, 2: 27. |
| 19 | CASTELLÓ A, ALVAREZ-SEGUÍ M, VERDÚ F. Luminous lip-prints as criminal evidence[J]. Forensic Sci Int, 2005, 155(2/3): 185-187. |
| 20 | PETER T, CHATRA L, SHENAI P, et al. The phoenix risescheiloscopy[J]. WJPR, 2014, 2(6): 2089-2098. |
| 21 | TSUCHIHASHI Y. Studies on personal identification by means of lip prints[J]. Forensic Sci, 1974, 3: 233-248. |
| 22 | KASPRZAK J. Cheiloskopia kryminalistyczna[M]. Częstochowa: Wydawnictwo Biura Techniki Kryminalistycznej KGP, 1991: 247-253. |
| 23 | LUDWIG A, PAGE H. An investigation into the dynamics of lip-prints as a means of identification[J]. Forensic Sci, 2012, 44(2): 169-181. |
| 24 | KAUR J, THAKAR M K. New individual features in lip prints-a potential support for personal identification[J]. Forensic Sci J, 2023, 56(1): 1-22. |
| 25 | WEI T, HAN J C, WANG L, et al. Magnetic perovskite nanoparticles for latent fingerprint detection[J]. Nanoscale, 2021, 13(27): 12038-12044. |
| 26 | JIN X D, WANG H, XIN R, et al. An aggregation-induced emission luminogen combined with a cyanoacrylate fuming method for latent fingerprint analysis[J]. Analyst, 2020, 145 (6): 2311-2318. |
| 27 | DUAN L X, ZHENG Q S, TU T. Instantaneous high-resolution visual imaging of latent fingerprints in water using color-tunable AIE pincer complexes[J]. Adv Mater, 2022, 34(35): e2202540. |
| 28 | CROXTON R, KENT T, LITTLEWOOD A, et al. An evaluation of inkjet printed amino acid fingerprint test targets for ninhydrin process monitoring-and some observations[J]. Forensic Sci Int, 2021, 321: 110741. |
| 29 | WANG Y Q, LYU S S, LUO J L, et al. Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability[J]. Appl Surface Sci, 2017, 422: 388-393. |
| 30 | SEGUÍ M A, FEUCHT M M, PONCE A C, et al. Persistent lipsticks and their lip prints: new hidden evidence at the crime scene[J]. Forensic Sci Int, 2000, 112(1): 41-47. |
| 31 | CASTELLÓ A, ALVAREZ-SEGUÍ M, VERDÚ F. Use of fluorescent dyes for developing latent lip prints[J]. Colorati Technol, 2004, 120(4): 184-187. |
| 32 | SINGH N N, BRAVE V R, KHANNA S. Natural dyes versus lysochrome dyes in cheiloscopy: a comparative evaluation[J]. J Forensic Dental Sci, 2010, 2(1): 11-17. |
| 33 | NAVARRO E, CASTELLÓ A, LÓPEZ-ALFARO J A, et al. More about the developing of invisible lipstick-contaminated lipmarks on human skin: the usefulness of fluorescent dyes[J]. J Forensic Legal Med, 2007, 14(6): 340-342. |
| 34 | AHMAD M B, SOOMRO U, MUQEET M, et al. Adsorption of indigo carmine dye onto the surface-modified adsorbent prepared from municipal waste and simulation using deep neural network[J]. J Hazard Mater, 2021, 408: 124433. |
| 35 | VERGHESE R, KHATOON H, RENUGA S, et al. Comparing the efficacy of fullers earth, indigo blue and vermillion in developing latent lip prints[J]. Forensic Med Toxicol, 2022, 22: 137-141. |
| 36 | KIRKBRIDE K P, LINACRE A. Detection of cellular material in lip-prints[J]. Forensic Sci, Med Pathol, 2019, 15: 362-368. |
| 37 | MEBUATHONG T, KANGSANAN W, CHINGTHONGKHAM P, et al. Vaseline treatment combined with a natural dye extract to enhance lip print contrast images[J]. Coloration Technol, 2021, 137(4): 361-367. |
| 38 | FONSECA G M, BONFIGLI E, CANTÍN M. Experimental model of developing and analysis of lip prints in atypical surface: a metallic straw[J]. J Forensic Dental Sci, 2014, 6(2): 126-131. |
| 39 | MORENO S, BROWN G, KLEIN M, et al. Chemical composition effect on latent print development using black fingerprint powders[J]. Forensic Chem, 2021, 26: 100366. |
| 40 | LI H, GUO X, LIU J, et al. A synthesis of fluorescent starch based on carbon nanoparticles for fingerprints detection[J]. Opt Mater, 2016, 60: 404-410. |
| 41 | 李聃, 孔垂龙, 胡博, 等. 磷光碳纳米粉的制备及其在潜手印无荧光干扰显现中的应用[J/OL]. 化工进展, 1-11[2024-10-24]. |
| LI D, KONG C L, HU B, et al, Synthesis of phosphorescent carbon nanoparticles powder and its application in the non-fluorescent interference development of latent fingerprints[J/OL]. Chem Ind Eng Prog, 1-11[2024-10-24]. | |
| 42 | ZHANG X, LIU X, LIU P, et al. Ultralong afterglow of heavy-atom-free carbon dots with a phosphorescence lifetime of up to 3.7 s for encryption and fingerprinting description[J]. Dalton Transact, 2024, 53(10): 4671-4679. |
| 43 | DHANALAKSHMI M, NAGABHUSHANA H, DARSHAN G P, et al. Sonochemically assisted hollow/solid BaTiO3∶Dy3+ microspheres and their applications in effective detection of latent fingerprints and lip prints[J]. J Sci: Adv Mater Dev, 2017, 2(1): 22-33. |
| 44 | SURESH C, NAGABHUSHANA H, DARSHAN G P, et al. Facile LaOF∶Sm3+ based labeling agent and their applications in residue chemistry of latent fingerprint and cheiloscopy under UV-visible light[J]. Arab J Chem, 2018, 11(4): 460-482. |
| 45 | SHARMA V, DAS A, KUMAR V, et al. Combustion synthesis and characterization of blue long lasting phosphor CaAl2O4∶Eu2+,Dy3+ and its novel application in latent fingerprint and lip mark detection[J]. Phys B: Condensed Matter, 2018, 535: 149-156. |
| 46 | LATHA N, VIDYA Y S, SHARMA S C, et al. Effect of Li+ coodoping on the photoluminescence of novel green emitting BiOCl∶Tb3+ nanophosphors for display, visualization of latent fingerprints and anticounterfeiting applications[J]. J Solid State Chem, 2020, 290: 121418. |
| 47 | LATHA N, LAVANYA D R, DARSHAN G P, et al. Green emanating BiOCl∶Tb3+ phosphors for strategic development of dermatoglyphics and anti-counterfeiting applications[J]. Inorg Chem Communs, 2022, 138: 109266. |
| 48 | SREEDHARA R, KRUSHNA B R R, PRASAD B D, et al. A cost-effective intense blue colour cobalt doped gahnite pigment for latent finger print, cheiloscopy and anti-counterfeiting applications[J]. Colloids Surf A: Physicochem Eng Aspects, 2023, 663: 131038. |
| 49 | KRUSHNA B R R, RAJASHEKHARAIAH A S, DARSHAN G P, et al. Desired highly efficient Eu3+ activated GdCaAl3O7 orange-red emanating nanophosphors for UV excitable forensic and advanced information encryption and decryption applications[J]. J Photochem Photobiol A: Chem, 2023, 444: 114880. |
| 50 | GAGANA M, KRUSHNA B R R, SHARMA S C, et al. Exploring innovative applications of Sr2MgSi2O7∶Fe3+ luminescent system in surface-triggered fingerprint divergence and Cheiloscopy screening[J]. Mater Today Sustain, 2024, 26: 100788. |
| 51 | NAVYA N, KRUSHNA B R R, SHARMA S C, et al. Highly efficient Dy3+ activated Sr9Al6O18 nanophosphors for W-LEDs, optical thermometry and deep learning-based intelligent system for personal identification applications[J]. Inorg Chem Commun, 2024, 169: 113138. |
| 52 | MAMATHA G R, KRUSHNA B R R, PRASAD B D, et al. Novel green emanating Sr6Al4Y2O15∶Er3+ nanophosphor for thermal sensing, data security and personal identification[J]. Microchem J, 2023, 193: 109184. |
| 53 | LI S, GUO J, SHI W, et al. Synthesis and characterization of wide band excited yellow phosphor LaNb2VO9∶Dy3+ and application in potential fingerprint and lip print detection[J]. J Lumin, 2022, 244: 118681. |
| 54 | GUO J, GUO J, GAO J, et al. A novel broadband-excited LaNb2VO9∶Sm3+ orange-red-emitting phosphor with zero-thermal-quenching behavior for WLEDs and personal identification[J]. Ceram Int, 2022, 48(18): 26992-27002. |
| 55 | DARSHAN C, ARJUN A, PREMKUMAR H B, et al. Tailoring robust luminescent-based BaSrY4O8∶Eu3+ platform opens new avenues for screening diverge surface prompted cheiloscopy, WLED's, and dosimetric applications[J]. Mater Today Sustain, 2023, 24: 100594. |
| 56 | SWATHI B N, KRUSHNA B R R, HARIPRASAD S A, et al. Designing vivid green Sr9Al6O18∶Er3+ phosphor for information encryption and NUV excitable cool-white LED applications[J]. J Lumin, 2023, 257: 119618. |
| 57 | SOLOMON A S, JACOB R M, SHEREEF A, et al. Multifunctional BiOCl∶Sm3+ nanophosphors: a luminescent platform for solid-state lighting applications, optical thermometry, photocatalytic and forensic applications[J]. Ceram Int, 2024, 50(24): 54348-54370. |
| 58 | HUMPHREYS J D, PORTER G, BELL M. The quantification of fingerprint quality using a relative contrast index[J]. Forensic Sci Int, 2008, 178(1): 46-53. |
| 59 | VANDERWEE J, PORTER G, RENSHAW A, et al. The investigation of a relative contrast index model for fingerprint quantification[J]. Forensic Sci Int, 2011, 204(1/2/3): 74-79. |
| 60 | MATUSZEWSKI S, SZAFAŁOWICZ M. A simple computer‐assisted quantification of contrast in a fingerprint[J]. J Forensic Sci, 2013, 58(5): 1310-1313. |
| 61 | 沈敦璞, 李明, 袁传军, 等. 基于荧光光谱方法计算手印显现对比度的研究[J]. 光谱学与光谱分析, 2020, 40(1): 91-97. |
| SHEN D P, LI M, YUAN C J, et al. Research on calculating the contrast of handprint appearance based on fluorescence spectroscopy method[J]. Spectrosc Spectral Anal, 2020, 40(1): 91-97. | |
| 62 | WROBEL K, DOROZ R, PORWIK P, et al. Personal identification utilizing lip print furrow based patterns. a new approach[J]. Pattern Recognit, 2018, 81: 585-600. |
| 63 | SHARMA V, DAS A, KUMAR V, et al. Combustion synthesis and characterization of blue long lasting phosphor CaAl2O4∶Eu2+, Dy3+ and its novel application in latent fingerprint and lip mark detection[J]. Phys B: Condensed Matter, 2018, 535: 149-156. |
| 64 | CHEN G, QIU H, PRASAD P N, et al. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics[J]. Chem Rev, 2014, 114(10): 5161-5214. |
| [1] | 熊亮, 高秉阳, 刘聪, 尹东明, 张振华, 韩直亚, 丁南, 程勇, 王立民. 镁基储氢材料纳米化研究进展[J]. 应用化学, 2025, 42(3): 293-312. |
| [2] | 李云扬, 郑睿哲, 周延, 海热古·吐逊, 董彪. 单颗粒上转换荧光光谱性质调控[J]. 应用化学, 2025, 42(3): 365-374. |
| [3] | 金念, 高春莉, 葛全倩, 徐迈, 梁铣, 朱传高, 王凤武. 缺陷型二氧化钛的构建及在光/光电催化应用的研究进展[J]. 应用化学, 2025, 42(2): 149-167. |
| [4] | 杨懿芊, 严晓霞, 彭皓, 吴爱国, 杨方. 近红外二区光驱动的光动力治疗在克服肿瘤乏氧环境中的研究进展[J]. 应用化学, 2024, 41(7): 925-936. |
| [5] | 李英维, 韩吉, 关卜源. 二维介孔材料的合成方法、设计与应用研究进展[J]. 应用化学, 2024, 41(6): 767-782. |
| [6] | 王元, 李焕荣. 二元离子型配合物Eu(HFA)4TPP掺杂PMMA薄膜的合成及性能[J]. 应用化学, 2024, 41(5): 607-615. |
| [7] | 彭孔浩, 白安琪, 孟颖, 殷慧, 宿欣瑶, 杨金玉, 李淑荣, 张凌燕, 罗利霞, 孟佩俊. 纳米材料传感器在有机磷农药残留检测中的研究进展[J]. 应用化学, 2024, 41(4): 472-483. |
| [8] | 尹娜, 王樱蕙, 张洪杰. 稀土纳米材料在脑肿瘤成像和治疗中的研究进展[J]. 应用化学, 2024, 41(3): 309-327. |
| [9] | 商宗玲, 张弨, 赵凤玉. 稀土修饰对Cu/Al2O3催化乙酰丙酸乙酯加氢性能的影响[J]. 应用化学, 2024, 41(3): 340-348. |
| [10] | 卢剑天, 邹金辉, 赵博霖, 张玉微. 无机纳米酶在分析传感领域的应用研究进展[J]. 应用化学, 2024, 41(1): 60-86. |
| [11] | 谭翠盈, 丁威超, 马婷婷, 肖瑶, 刘健. 超亲水/超疏气电解水催化剂的研究进展[J]. 应用化学, 2023, 40(8): 1109-1125. |
| [12] | 李慧慧, 姚开胜, 赵亚南, 范李娜, 田钰琳, 卢伟伟. 离子液体调控合成Pt-Pd双金属纳米材料及其催化氨硼烷水解释氢[J]. 应用化学, 2023, 40(4): 597-609. |
| [13] | 卜芃, 李宏亮. 稀土Yb3+/Tm3+掺杂NaGd(MO4)2荧光粉的制备及其光致发光[J]. 应用化学, 2023, 40(3): 374-379. |
| [14] | 任权兵, 钟鸣, 郑波, 冯兰, 丁南, 尹东明, 程勇, 王立民. 稀土元素改性钒基固溶体储氢合金研究进展[J]. 应用化学, 2023, 40(12): 1601-1612. |
| [15] | 安正策, 王丽萍, 周博. Er3+/Tm3+共掺镱基纳米晶上转换白光调控及应用[J]. 应用化学, 2023, 40(12): 1623-1629. |
| 阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
|
全文 100
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|
摘要 168
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||